Skip to main content
Log in

Glycosylations versus conformational preferences of cancer associated mucin core

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Synthetic oligosaccharide vaccines based on core STn (sialyl α2-6 GalNAc) carbohydrate epitopes are being evaluated by a number of biopharmaceutical firms as potential immunotherapeutics in the treatment of mucin-expressing adenocarcinomas. The STn carbohydrate epitopes exist as discontinuous clusters, O-linked to proximal serine and threonine residues within the mucin sequence. In an effort to probe the structure and dynamics of STn carbohydrate clusters as they may exist on the cancer-associated mucin, we have used NMR spectroscopy and MD simulations to study the effect of O-glycosylation of adjacent serine residues in a repeating (Ser)n sequence. Three model peptides/glyco-peptides were studied: a serine trimer containing no carbohydrate groups ((Ser)3 trimer); a serine trimer containing three Tn (GalNAc) carbohydrates α-linked to the hydroxyls of adjacent serine sidechains ((Ser.Tn)3 trimer); and a serine trimer containing three STn carbohydrates α-linked to the hydroxyls of adjacent serine sidechains ((Ser.STn)3 trimer). Our results demonstrate that clustering of carbohydrates shifts the conformational equilibrium of the underlying peptide backbone into a more extended and rigid state, an arrangement that could function to optimally present the clustered carbohydrate antigen to the immune system. Steric effects appear to drive these changes since an increase in the size of the attached carbohydrate (STn versus Tn) is accompanied by a stronger shift in the equilibrium toward the extended state. In addition, NMR evidence points to the formation of hydrogen bonds between the peptide backbone NH protons and the proximal GalNAc groups in the (Ser.Tn)3 and (Ser.STn)3 trimers. The putative peptide-sugar hydrogen bonds may also play a role in influencing the conformation of the underlying peptide backbone, as well as the orientation of the O-linked carbohydrate. The significance of these results will be discussed within the framework of developing clustered STn-based vaccines, capable of targeting the clustered STn epitopes on the cancer-associated mucin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M, Biochim Biophys Acta 1455, 301–13 (1999).

    PubMed  Google Scholar 

  2. Miles DW, Taylor-Papadimitriou J, Pharmacol Ther 82, 97–106 (1999).

    PubMed  Google Scholar 

  3. Apostolopoulos V, Sandrin MS, McKenzie IF, J Mol Med 77, 427–36 (1999).

    PubMed  Google Scholar 

  4. Apostolopoulos V, Pietersz GA, McKenzie IF, Curr Opin Mol Ther 1, 98–103 (1999).

    PubMed  Google Scholar 

  5. van den Steen P, Rudd PM, Dwek RA, Podenakker G, Crit Rev Biochem Mol Biol 33, 151–208 (1998).

    PubMed  Google Scholar 

  6. Rudd PM, Dwek RA, Crit Rev Biochem Mol Biol 32, 1–100 (1997).

    PubMed  Google Scholar 

  7. Carlstedt I, Davies JR, Biochem Soc Trans 25, 214–9 (1997).

    PubMed  Google Scholar 

  8. Koganty RR, Reddish MA, Longenecker BM. In Glycopeptides and Related Compounds: Synthesis, Analysis and Application, edited by Large DG, Warren CD (Dekker, New York, 1997), pp. 707–43.

    Google Scholar 

  9. Apostolopoulos V, McKenzie IF, Crit Rev Immunol 14, 293–309 (1994).

    PubMed  Google Scholar 

  10. Girling A, Bartkova J, Burchell J, Gendler S, Gillett C, Taylor-Papadimitriou J, Int J Cancer 43, 1072–6 (1989).

    PubMed  Google Scholar 

  11. Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, Kim YS, Cancer Res 49, 197–204 (1989).

    PubMed  Google Scholar 

  12. Ogata S, Koganty R, Reddish M, Longenecker BM, Chen A, Perez C, Itzkowitz SH, Glycoconj J 15, 29–35 (1998).

    PubMed  Google Scholar 

  13. Zhuang D, Yousefi S, Dennis JW, Cancer Biochem Biophys 12, 185–98 (1991).

    PubMed  Google Scholar 

  14. Brockhausen I, Yang J, Dickinson N, Ogata S, Itzkowitz SH, Glycoconj J 15, 595–603 (1998).

    PubMed  Google Scholar 

  15. Cao Y, Karstden U, Otto G, Bannascth P, Virchows Arch 434, 503–9 (1999).

    PubMed  Google Scholar 

  16. Cao Y, Schlag PM, Karsten U, Virchows Arch 431, 159–66 (1997).

    PubMed  Google Scholar 

  17. Springer GF, J Mol Med 75, 594–602 (1997).

    PubMed  Google Scholar 

  18. Springer GF, Crit Rev Oncog 6, 57–85 (1995).

    PubMed  Google Scholar 

  19. Springer GF, Science 224, 1198–1206 (1984).

    Google Scholar 

  20. Kishikawa T, Ghazizadeh M, Sasaki Y, Springer GF, Jpn J Cancer Res 90, 326–32 (1999).

    PubMed  Google Scholar 

  21. Terasawa K, Furumoto H, Kamada M, Aono T, Cancer Res 56, 2229–32 (1996).

    PubMed  Google Scholar 

  22. David L, Nesland JM, Clausen H, Carneiro F, Sobrinho-Simoes M, APMIS Suppl 27, 162–72 (1992).

    PubMed  Google Scholar 

  23. Takao S, Uchikura K, Yonezawa S, Shinchi H, Aikou T, Cancer 86, 1966–75 (1999).

    PubMed  Google Scholar 

  24. Imada T, Rino Y, Hatori S, Takahashi M, Amano T, Kondo J, Suda T, Hepatogastroenterology 46, 208–14 (1999).

    PubMed  Google Scholar 

  25. Terashima S, Takano Y, Ohori T, Kanno T, Kimura T, Motoki R, Kawaguchi T, Surg Today 28, 682–6 (1998).

    PubMed  Google Scholar 

  26. Werther JL, Tatematsu M, Klein R, Kurihara M, Kumagai K, Llorens P, Guidugli Neto J, Bodian C, Pertsemlidis D, Yamachika T, Kitou T, Itzkowitz S, Int J Cancer 69, 193–9 (1996).

    PubMed  Google Scholar 

  27. Miles DW, Linehan J, Smith P, Filipe I, Br J Cancer 71, 1074–6 (1995).

    PubMed  Google Scholar 

  28. Takahashi I, Maehara Y, Kusumoto T, Kohnoe S, Kakeji Y, Baba H, Sugimachi K, Br J Cancer 69, 163–6 (1994).

    PubMed  Google Scholar 

  29. Kobayashi H, Terao T, Kawashima Y, J Clin Oncol 10, 95–101 (1992).

    PubMed  Google Scholar 

  30. Soares R, Marinho A, Schmitt F, Pathol Res Pract 192, 1181–6 (1996).

    PubMed  Google Scholar 

  31. Terasawa K, Furumoto H, Kamada M, Aono T, Cancer Res 56, 2229–32 (1996).

    PubMed  Google Scholar 

  32. Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH, Brodt P, Byrd JC, Gastroenterology 110, 1354–67 (1996).

    PubMed  Google Scholar 

  33. Ragupathi G, Howard L, Cappello S, Koganty RR, Qiu D, Longenecker BM, Reddish MA, Lloyd KO, Livingston PO, Cancer Immunol Immunother 48, 1–8 (1999).

    PubMed  Google Scholar 

  34. MacLean GD, Miles DW, Rubens RD, Reddish MA, Longenecker BM, J Immunother Emphasis Tumor Immunol 19, 309–16 (1996).

    PubMed  Google Scholar 

  35. Reddish MA, MacLean GD, Poppema S, Berg A, Longenecker BM, Cancer Immunol Immunother 42, 303–9 (1996).

    PubMed  Google Scholar 

  36. Ogata S, Koganty R, Reddish M, Longenecker BM, Chen A, Perez C, Itzkowitz SH, Glycoconj J 15, 29–35 (1998).

    PubMed  Google Scholar 

  37. Reddish MA, Jackson L, Koganty RR, Qiu D, Hong W, Longenecker BM, Glycoconj J 14, 549–60 (1997).

    PubMed  Google Scholar 

  38. Zhang S, Walberg LA, Ogata S, Itzkowitz SH, Koganty RR, Reddish M, Gandhi SS, Longenecker BM, Lloyd KO, Livingston PO, Cancer Res, 55, 3364–8 (1995).

    PubMed  Google Scholar 

  39. States DJ, Haberkorn RA, Ruben DJ, J Magn Reson 48, 286–92 (1982).

    Google Scholar 

  40. Piatini U, Sorenson OW, Ernst RR, J Am Chem Soc 104, 6800–1 (1982).

    Google Scholar 

  41. Rance M, Sorenson OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K, Biochem Biophys Res Commun 117, 479–85 (1983).

    PubMed  Google Scholar 

  42. Bax A, Davis DG, J Magn Reson 65, 355–60 (1985).

    Google Scholar 

  43. Kessler H, Griesinger C, Kerssebaum R, Wagner K, Ernst RR, J Am Chem Soc 109, 607–9 (1987).

    Google Scholar 

  44. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT, Proteins 4, 31–47 (1988).

    PubMed  Google Scholar 

  45. Balaji PV, Qasba PK, Rao VS, Glycobiology 4, 497–515 (1994).

    PubMed  Google Scholar 

  46. Kozar T, Tvaroska I, Carver JP, Glyconjugate J 15, 187–91 (1998).

    Google Scholar 

  47. Gerken TA, Arch Biochem Biophys 247, 239–53 (1986).

    PubMed  Google Scholar 

  48. Liu X, Sejbal J, Kotovych G, Koganty RR, Reddish MA, Jackson L, Gandhi SS, Mendonca AJ, Longenecker BM, Glyconjugate J 12, 607–17 (1995).

    Google Scholar 

  49. Mimura Y, Inoue Y, Maeji NJ, Chujo R, Int J Pept Prot Res 34, 363–8 (1989).

    Google Scholar 

  50. Butenhof KJ, Gerken TA, Biochemistry 32, 2650–63 (1993).

    PubMed  Google Scholar 

  51. Wishart DS, Sykes BD, Richards FM, J Mol Biol 222, 311–33 (1991).

    PubMed  Google Scholar 

  52. Osapay K, Case DA, J Biomol NMR 4, 215–30 (1994).

    PubMed  Google Scholar 

  53. Wishart DS, Bigam, CG, Holm A, Hodges RS, Sykes BD, J Biol NMR 5, 67–81 (1995).

    Google Scholar 

  54. Dyson HJ, Wright PE, Annu Rev Biophys Chem 20, 519–38 (1991).

    Google Scholar 

  55. Live DH, Williams LJ, Kuduk SD, Schwarz JB, Glunz PW, Chen XT, Sames D, Kumar RA, Danishefsky SJ, Proc Natl Acad Sci USA 96, 3489–93 (1999).

    PubMed  Google Scholar 

  56. Liang R, Adreotti AH, Kahne D, J Am Chem Soc 117, 10395–6 (1995).

    Google Scholar 

  57. Rose GD, Gierasch LM, Smith JA, Adv Protein Chem 37, 1–109 (1985).

    PubMed  Google Scholar 

  58. Watts CR, Tessmer MR, Kallick DA, Lett Pept Sci 2, 59–70 (1995).

    Google Scholar 

  59. Andersen NH, Neidigh JW, Harris SM, Lee GM, Liu Z, Tong H, J Am Chem Soc 119, 8547–61 (1997).

    Google Scholar 

  60. Pardi A, Billeter M, Wüthrich K, J Mol Biol 180, 741–51 (1984).

    PubMed  Google Scholar 

  61. Yao J, Feher VA, Espejo BF, Reymond MT, Wright PE, Dyson HJ, J Mol Biol 243, 736–53 (1994).

    PubMed  Google Scholar 

  62. Schuster O, Klich G, Sinnwell V, Kranz H, Paulsen H, Mayer B, J Biomol NMR 14, 33–45 (1999).

    PubMed  Google Scholar 

  63. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G, Crit Rev Biochem Mol Biol 33, 151–208 (1998).

    PubMed  Google Scholar 

  64. Bailey D, Renouf DV, Large DG, Warren CD, Hounsell EF, Carbohyd Res 324, 242–54 (2000).

    Google Scholar 

  65. Andreotti AH, Kahne D, J Am Chem Soc 115, 3352–3 (1993).

    Google Scholar 

  66. McManus AM, Otvos L, Hoffmann R, Craik DJ, Biochemistry 38, 705–14 (1999).

    PubMed  Google Scholar 

  67. Gururaja TL, Ramasubbu N, Venugopalan P, Reddy MS, Ramalingam K, Levine MJ, Glycoconj J 15, 457–67 (1998).

    PubMed  Google Scholar 

  68. Shogren R, Gerken TA, Jentoft N, Biochemistry 28, 5525–36 (1989).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuman, J., Qiu, D., Koganty, R.R. et al. Glycosylations versus conformational preferences of cancer associated mucin core. Glycoconj J 17, 835–848 (2000). https://doi.org/10.1023/A:1010909011496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010909011496

Navigation