Skip to main content
Log in

Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Aromatic and aliphatic hydrocarbons are the main constituents of petroleum and its refined products. Whereas degradation of hydrocarbons by oxygen-respiring microorganisms has been known for about a century, utilization of hydrocarbons under anoxic conditions has been investigated only during the past decade. Diverse strains of anaerobic bacteria have been isolated that degrade toluene anaerobically, using nitrate, iron(III), or sulfate as electron acceptors. Also, other alkylbenzenes such as m-xylene or ethylbenzene are utilized by a number of strains. The capacity for anaerobic utilization of alkylbenzenes has been observed in members of the α-, β-, γ- and δ-subclasses of the Proteobacteria. Furthermore, denitrifying bacteria and sulfate-reducing bacteria with the capacity for anaerobic alkane degradation have been isolated, which are members of the β- and δ-subclass, respectively. The mechanism of the activation of hydrocarbons as apolar molecules in the absence of oxygen is of particular interest.The biochemistry of anaerobic toluene degradation has been studied in detail. Toluene is activated by addition to fumarate to yield benzylsuccinate, which is then further metabolized via benzoyl-CoA. The toluene-activating enzyme presents a novel type of glycine radical protein. Another principle of anaerobic alkylbenzene activation has been observed in the anaerobic degradation of ethylbenzene. Ethylbenzene in denitrifying bacteria is dehydrogenated to 1-phenylethanol and further to acetophenone; the latter is also metabolized to benzoyl-CoA. Naphthalene is presumably activated under anoxic conditions by a carboxylation reaction. Investigations into the pathway of anaerobic alkane degradation are only at the beginning. The saturated hydrocarbons are mostlikely activated by addition of a carbon compound rather than by desaturation and hydration, as speculated about in some early studies. An anaerobic oxidation of methane with sulfate as electron acceptor has been documented in aquatic sediments. The process is assumed to involve a reversal of methanogenesis catalyzed by Archaea, and scavenge of an electron-carrying metabolite by sulfate-reducing bacteria. Among unsaturated non-aromatic hydrocarbons, anaerobic bacterial degradation has been demonstrated and investigated with n-alkenes, alkenoic terpenes and the alkyne, acetylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aeckersberg F, Bak F & Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14

    Google Scholar 

  • Aeckersberg F, Rainey FA & Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch. Microbiol. 170(5): 361–369

    Google Scholar 

  • Aharon P & Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta 64: 233–246

    Google Scholar 

  • Al-Bashir B, Cseh T, Leduc R & Samson R (1990) Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. Appl. Environ. Biotechnol. 34: 414–419

    Google Scholar 

  • Alperin M & Reeburgh WS (1984) Geochemical observations supporting anaerobic methane oxidation. In: Crawford RL & Hanson DL (Eds) Microbial Growth on C-1 Compounds (pp 282–289). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Alperin MJ & Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol. 50: 940–945

    Google Scholar 

  • Alperin M, Reeburgh W & Whiticar M (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochemical Cycles 2: 279–288

  • Anders H-J, Kaetzke A, Kaempfer P, Ludwig W & Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 45: 327–333

    Google Scholar 

  • Anderson RT & Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404: 722–723

    Google Scholar 

  • Ans J d' (1983) Taschenbuch für Chemiker und Physiker (D'Ans Lax). Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Azoulay E, Chouteau J & Davidovics G (1963) Isolement et caracterisation des enzymes responsables de l'oxydation des hydrocarbures. Biochim. Biophys. Acta 77: 554–567

    Google Scholar 

  • Ball HA, Johnson HA, Reinhard M & Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J. Bacteriol. 178: 5755–5761

    Google Scholar 

  • Barnes R. & Goldberg E (1976) Methane production and consumption in anoxic marine sediments. Geology 4: 297–300

    Google Scholar 

  • Bedessem M, Swoboda-Colberg N & Colberg P (1997) Naphthalene mineralization coupled to sulfate-reduction in aquifer-derived enrichments. FEMS Microbiol. Lett. 152: 213–218

    Google Scholar 

  • Beller H, Reinhard M & Grbi´c-Gali´c D (1992) Metabolic byproducts of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 58: 3192–3195

    Google Scholar 

  • Beller H, Ding W-H & Reinhard M (1995) Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ. Sci. Technol. 29: 2864–2870

    Google Scholar 

  • Beller HR& Spormann AM(1997a) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J. Bacteriol. 179: 670–676

    Google Scholar 

  • Beller HR& Spormann AM(1997b) Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl. Environ. Microbiol. 63: 3729–3731

    Google Scholar 

  • Beller HR& Spormann AM(1998) Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol. 180: 5454–5457

    Google Scholar 

  • Beller HR & Spormann AM (1999) Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiology Letters 178: 147–153.

    Google Scholar 

  • Beller H.R, Spormann AM, Sharma PK, Cole JR & Reinhard M (1996) Isolation and characterization of a novel toluenedegrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188–1196

    Google Scholar 

  • Biegert T, Fuchs G & Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur. J. Biochem. 238(3): 661–668

    Google Scholar 

  • Birch L & Bachofen R (1988) Microbial production of hydrocarbons. In: Rehm H-J (Ed) Biotechnology, Vol 6b(pp 71–99). VCH, Weinheim

    Google Scholar 

  • Blair N & Aller R (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim. Cosmochim. Acta 59: 3707–3715

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U & Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626

    Google Scholar 

  • Bregnard TP-A, Höhener P, Häner A & Zeyer J (1996) Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. Environ. Toxicol. Chem. 15: 299–307

    Google Scholar 

  • Bregnard T.P-A, Häner A, Höhener P & Zeyer J (1997) Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl. Environ. Microbiol. 63(5): 2077–2081

    Google Scholar 

  • Britton L (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson TD (Ed) Microbial Degradation of Organic Compounds (pp 89–129). Marcel Dekker, New York, Basel

    Google Scholar 

  • Buckel W (1992) Unusual dehydrations in anaerobic bacteria. FEMS Microbiol. Rev. 88: 211–232

    Google Scholar 

  • Bühler M& Schindler J (1984) Aliphatic hydrocarbons. In: Kieslich K (Ed) Biotechnology (pp 329–385). VCH, Weinheim

    Google Scholar 

  • Burland S & Edwards E (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65: 529–533

    Google Scholar 

  • Caldwell ME, Garrett RM, Prince RC & Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfatereducing conditions. Environ. Sci. Technol. 32: 2191–2195

    Google Scholar 

  • Champion KM, Zengler K & Rabus R (1999) Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. J. Mol. Microbiol. Biotechnol. 1: 157–164

    Google Scholar 

  • Chee-Sanford JC, Frost JW, Fries MR, Zhou J & Tiedje JM (1996). Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Appl. Environ. Microbiol. 62: 964–973

    Google Scholar 

  • Chen CI & Taylor RT (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl. Microbiol. Biotechnol. 48: 121–128

    Google Scholar 

  • Chouteau J, Azoulay E & Senez J (1962) Anaerobic formation of n-hept-1-ene from n-heptane by resting cells of Pseudomonas aeruginosa. Nature 194: 576–578

    Google Scholar 

  • Coates J.D., Anderson RT & Lovley DR (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62: 1099–1101

    Google Scholar 

  • Coates JD, Woodward J, Allen J, Philip P & Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63: 3589–3593

    Google Scholar 

  • Conrad R (1995) Soil microbial processes involved in production and consumption of atmospheric trace gases. In: Jones JG (Ed) Advances in Microbial Ecology, Vol. 14(pp 207–250). Plenum Press, New York

    Google Scholar 

  • Coschigano PW (1999) Transcriptional analysis of the tutEtut-FDGH gene cluster from the denitrifying bacterium Thauera aromatica strain T1. Appl. Environ. Microbiol. 66: 1147–1151

    Google Scholar 

  • Coschigano PW, Wehrman TS & Young LY (1998) Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: Putative role of a glycine free radical. Appl. Environ. Microbiol. 64: 1650–1656

    Google Scholar 

  • Dalton H (1992) Methane oxidation by methanotrophs: physiological and mechanistic implications. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 85–114). Plenum Press, New York

    Google Scholar 

  • Davis J & Yarbrough H (1966) Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem. Geol. 1: 137–144

    Google Scholar 

  • Dean JA (1992) Lange's Handbook of Chemistry. McGraw-Hill, New York

    Google Scholar 

  • DeBont J & Peck M (1980) Metabolism of acetylene by Rhodococcus A 1. Arch. Microbiol. 127: 99–104

    Google Scholar 

  • Devol AH & Ahmed SI (1981) Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature 291: 407–408

    Google Scholar 

  • Dillon WP & Paull CK (1983) Marine gas hydrates: II Geophysical evidence. In: Cox JL (Ed) Natural Gas Hydrates, Properties, Occurrence and Recovery (pp 73–90). Plenum Press, New York

    Google Scholar 

  • Dolfing J, Zeyer J, Binder Eicher P & Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch. Microbiol. 154: 336–341

    Google Scholar 

  • Edwards EA, Wills LE, Reinhard M & Grbi´c Gali´c D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol. 58: 794–800

    Google Scholar 

  • Ehrenreich P, Behrends A, Harder J & Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 173: 58–64

    Google Scholar 

  • Eklund H & Fontecave M (1999) Glycyl radical enzymes: a conservative basis for radicals. Structure Fold. Des. 7: R2 57-62

    Google Scholar 

  • Elvert M & Suess E (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86: 295–300

    Google Scholar 

  • Evans PJ, Mang DT, Kim KS & Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol. 57: 1139–1145

    Google Scholar 

  • Evans PJ, Ling W, Goldschmidt B, Ritter ER & Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl. Environ. Microbiol. 58: 496–501

    Google Scholar 

  • Ferry J (1993) Methanogenesis. Chapman & Hall, New York

    Google Scholar 

  • Fitz W & Arigoni D (1992) Biosynthesis of 15,16-dimethyltriacontanedioic acid (diabolic acid) from [16-2H3]-and [14-2H2]-palmitic acids. J. Chem. Soc. Chem. Commun. 20: 1533–1534

    Google Scholar 

  • Foss S, Heyen U & Harder J (1998) Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α-pinene, 2-carene, and α-phellandrene) and nitrate. Syst. Appl. Microbiol. 21: 237–244

    Google Scholar 

  • Fries MR, Zhou J, Chee-Sanford J. & Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl. Environ. Microbiol. 60: 2802–2810

    Google Scholar 

  • Galliker P, Gräther O, Rümmler M, Fitz W & Arigoni D (1998) New structural and biosynthetic aspects of the unusual core lipids from archaebacteria. Vitamin B12 and B12-proteins (pp 447–458). Wiley-VCH, Weinheim

    Google Scholar 

  • Galushko A, Minz D, Schink B & Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 1: 415–420

    Google Scholar 

  • Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker, Inc., New York

    Google Scholar 

  • Gilewicz M, Monpert G, Acquaviva M, Mille G & Bertand J-C (1991) Anaerobic oxidation of 1-n-heptadecene by a marine denitrifying bacterium. Appl. Microbiol. Biotechnol. 36: 252–256

    Google Scholar 

  • Grbi´c-Gali´c D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260

    Google Scholar 

  • Griffin W & Traxler R (1981) Some aspects of hydrocarbon metabolism by Pseudomonas. Dev. Ind. Microbiol. 22: 425–435

    Google Scholar 

  • Grogan DW & Cronan JE (1997) Cyclopropane ring formation in membrane lipids. Microbiol. Mol. Biol. Rev. 61: 429–441

    Google Scholar 

  • Groh S & Nelson M (1990) Mechanisms of activation of carbonhydrogen bonds by metalloenzymes. In: Davies JA, Watson PL, Liebman JF, Greenberg JA (Eds) Selective Hydrocarbon Activation (pp 305–378). VCH, New York, Weinheim, Cambridge

    Google Scholar 

  • Gurr M & Harwood J (1991) Lipid Biochemistry. Chapman & Hall, London

    Google Scholar 

  • Häner A, Höhener P & Zeyer J (1995) Degradation of p-xylene by a denitrifying enrichment culture. Appl. Environ. Microbiol. 61: 3185–3188

    Google Scholar 

  • Häner A, Höhener P & Zeyer J (1997) Degradation of trimethylbenzene isomers by an enrichment culture under N2O-reducing conditions. Appl. Environ. Microbiol. 63: 1171–1174

    Google Scholar 

  • Hansen L, Finster K, Fossing H & Iversen N (1998) Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aqua. Microb. Ecol. 14: 195–204

    Google Scholar 

  • Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Mar. Geol. 137: 13–23

    Google Scholar 

  • Harder J & Foss S (1999) Anaerobic formation of the aromatic hydrocarbon p-cymene from monoterpenes by methanogenic enrichment cultures. Geomicrobiol. J. 16: 295–306

    Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R& Widdel F (1999a) Anaerobic oxidation of o-xylene, mxylene, and homologous alkylbenzenes by new types of sulfatereducing bacteria. Appl. Environ. Microbiol. 65: 999–1004

    Google Scholar 

  • Harms G, Rabus R & Widdel F (1999b) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch. Microbiol. 172: 303–312

    Google Scholar 

  • Harwood CS, Burchardt G, Herrmann H & Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22: 439–458

    Google Scholar 

  • Heider J, Boll M, Breese K, Breinig S, Ebenau-Jehle C, Feil U, Gad'on N, Laempe D, Leuthner B, M. Mohamed ME-S et al. (1998) Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch. Microbiol. 170: 120–131

    Google Scholar 

  • Heider J & Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243: 577–596

    Google Scholar 

  • Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P & Zeyer J (1997) In situ analysis of denitrifying toluene-and m-xylenedegrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl. Environ. Microbiol. 65: 2136–2141

    Google Scholar 

  • Heyen U & Harder J (1998) Cometabolic isoterpinolene formation from isolimonene by denitrifying Alcaligenes defragrans. FEMS Microbiol. Lett. 169: 67–71

    Google Scholar 

  • Hinrichs K-U, Hayes J, Sylva S, Brewer P & DeLong E (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802–805

    Google Scholar 

  • Hoehler TM, Alperin MJ, D. Albert B & Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 8: 451–463

    Google Scholar 

  • Hylemon P & Harder J (1999) Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol. Rev. 22: 475–488

    Google Scholar 

  • Iida M & Iizuka H (1970) Anaerobic formation of n-decyl alcohol from n-decene-1 by resting cells of Candida rugosa. Z. Allg. Mikrobiol. 10: 245–252

    Google Scholar 

  • Iizuka H, Iida M & Fujita S (1969) Formation of n-decene-1 from n-decane by resting cells of Candida rugosa. Z. Allg. Mikrobiol. 9: 223–226

    Google Scholar 

  • Iversen N & Blackburn T (1981) Seasonal rates of methane oxidation in anoxic marine sediments. Appl. Environ. Microbiol. 41: 1295–1300

    Google Scholar 

  • Iversen N & Jørgensen B (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30: 944–955

    Google Scholar 

  • Johnson HA & Spormann AM (1999) In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization. J. Bacteriol. 181: 5662–5668

    Google Scholar 

  • Jordan A & Reichard P (1998) Ribonucleotide reductases. Ann. Rev. Biochem. 67: 71–98

    Google Scholar 

  • Kanner D & Bartha R (1982) Metabolism of acetylene by Nocardia rhodochrous. J. Bacteriol. 150: 989–992

    Google Scholar 

  • Kazumi JC, Caldwell ME, Suflita JM, Lovley DR & Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ. Sci. Technol. 31: 813–818

    Google Scholar 

  • Knappe J & Wagner AFV (1995) Glycyl free radical in pyruvate formate-lyase: synthesis, structure characteristics, and involvement in catalysis. Methods Enzymol. 258: 343–362

    Google Scholar 

  • Krieger CJ, Beller HR, Reinhard M & Spormann AM (1999) Initial reactions in anaerobic oxidation of m-xylene in the denitrifying bacterium Azoarcus sp. strain T. J. Bacteriol. 181: 6403–6410

    Google Scholar 

  • Kuhn EP, Zeyer J, Eicher P& Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490–496

    Google Scholar 

  • Langenhoff AAM, Zehnder AJB & Schraa G (1996) Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7: 267–274

    Google Scholar 

  • Leuthner B & Heider J (1998) A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbiol. Lett. 166: 35–41

    Google Scholar 

  • Leuthner B & Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of _ oxidation of the intermediate benzylsuccinate. J. Bacteriol. 182: 272–277

    Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hoerth P, Haehnel W, Schiltz E, Schaegger H & Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: A new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28: 615–628

    Google Scholar 

  • Leutwein C& Heider J (1999) Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and _-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiol. 145: 3265–3271

    Google Scholar 

  • Lovley D.R, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP & Siegel OI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297–300

    Google Scholar 

  • Lovley DR & Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858–1864

    Google Scholar 

  • Lovley DR, Coates JD, Woodward JC & Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953–958

    Google Scholar 

  • March J (1992) Advanced Organic Chemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Martens CS & Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments: 1. Dissolved gases. Limnol. Oceanogr. 22(1): 10–25

    Google Scholar 

  • McKenna E & Kallio R (1965) The biology of hydrocarbons. Ann. Rev. Microbiol. 19: 183–208

    Google Scholar 

  • McNally DL, Mihelcic JP & Lueking DR (1998) Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol. 32: 2633–2639

    Google Scholar 

  • Meckenstock R (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol. Lett. 177: 67–73

    Google Scholar 

  • Meckenstock R, Krieger R, Ensign S, Kroneck P & Schink B (1999) Acetylene hydratase of Pelobacter acetylenicus: molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. Eur. J. Biochem. 264: 176–182

    Google Scholar 

  • Metzler DE (1977) Biochemistry: The Chemical Reactions of Living Cells. Academic Press, New York, San Francisco, London

    Google Scholar 

  • Mihelcic JR& Luthy RG (1988) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soilwater systems. Appl. Environ. Microbiol. 54: 1182–1187

    Google Scholar 

  • Monpert G (1996) Relation between denitrification and biodegradation of n-heptadecane in a marine bacterium. C.R. Séances Acad. Sci. Vie. Acad. 319: 805–809

    Google Scholar 

  • Müller JA, Galushko AS, Kappler A & Schink B (1999) Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172: 287–294

    Google Scholar 

  • Niehaus W, Kisic A, Torkelson A, Bednarczyk D & Schroepfer G (1970) Stereospecific hydration of the 19 double bond of oleic acid. J. Biol. Chem. 245: 3790–3797

    Google Scholar 

  • Novelli GD & ZoBell CE (1944) Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J. Bacteriol. 47: 447–448

    Google Scholar 

  • Overmann J, Sandmann G, Hall KJ & Northcote TG (1993) Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada. Aquat. Sci. 55: 31–39

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Benders M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, E. Saltzman E & Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436

    Google Scholar 

  • Phelps CD, Kerkhof LJ & Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol. Ecol. 27(3): 269–279

    Google Scholar 

  • Platen H & Schink B (1989) Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J. Gen. Microbiol. 135: 883–892.

    Google Scholar 

  • Rabus R. & Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163: 96–103

    Google Scholar 

  • Rabus R& Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch. Microbiol. 170: 377–384

    Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W & Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444–1451

    Google Scholar 

  • Rabus R, Hansen TA & Widdel F (2000) Dissimilatory sulfate-and sulfur-reducing prokaryotes, in press. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H & Stackebrandt E (Eds) The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Springer-Verlag, New York

    Google Scholar 

  • Reeburgh W(1976) Methane consumption in Caraco Trench waters and sediments. Earth Planetary Sci. Lett. 28: 337–344

    Google Scholar 

  • Reeburgh W (1980) Anaerobic methane oxidation: rate depth distribution in Skan Bay sediment. Earth Planet Sci. Lett. 47: 345–352

    Google Scholar 

  • Reeburgh W & Alperin M (1988) Studies on anaerobic methane oxidation. Mitt Geologisch-Paläontologisches Institut der Universität Hamburg 66: 367–375

    Google Scholar 

  • Rooney-Varga, JN, Anderson RT, Fraga JL, Ringelberg D & Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65: 3056–3063

    Google Scholar 

  • Rosner B & Schink B (1995) Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten ironsulfur protein. J. Bacteriol. 177: 5767–5772

    Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW & Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458

    Google Scholar 

  • Savithiry N, Cheong TK & Oriel P (1997) Production of _-terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl. Biochem. Biotechnol. 63-65: 213–220

    Google Scholar 

  • Schink B (1985a) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 31: 69–77

    Google Scholar 

  • Schink B (1985b) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus. Arch. Microbiol. 142: 295–301

    Google Scholar 

  • Schocher RJ, Seyfried B, Vazquez F & Zeyer J (1991) Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch. Microbiol. 157: 7–12

    Google Scholar 

  • Scranton MIP, Novelli PC & Loud PA (1984) The distribution and cycling of hydrogen gas in the water of two anoxic marine environments. Limnol. Oceanogr. 29: 993–1003

    Google Scholar 

  • Senez J & Azoulay E (1961) Déshydrogénation d'hydrocarbures paraffiniques par les suspensions non-proliferantes et les extraits de Pseudomonas aeruginosa. Biochim. Biophys. Acta 47: 307–316

    Google Scholar 

  • Sluis MK & Ensign SA (1997) Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc. Natl. Acad. Sci. 94: 8456–8461

    Google Scholar 

  • Sluis MK, Small FJ, Allen JR & Ensign SA (1996) Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2. J. Bacteriol. 178: 4020–4026

    Google Scholar 

  • So CM & Young LY (1999a) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl. Environ. Microbiol. 65: 2969–2976.

    Google Scholar 

  • So CM & Young LY (1999b) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl. Environ. Microbiol. 65: 5532–5540

    Google Scholar 

  • Song B, Young LY & Palleroni NJ (1998) Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition, Int. J. Syst. Bacteriol. 48: 889–894.

    Google Scholar 

  • Stumm W & Morgan JJ (1981) Aquatic Chemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Swain H, Somerville H & Cole J (1978) Denitrification during growth of Pseudomonas aeruginosa on octane. J. Gen. Microbiol. 107: 103–112

    Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria (pp 39–69). In: Frank HA, Young AJ, Britton G & Cogdell RJ (Eds) The Photochemistry of Carotenoids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Thauer RK, Jungerman K & Decker K (1977) Energy conservation in chemotrophic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Tissot B & Welte D (1984) Petroluem Formation and Occurrence. Springer Verlag, Berlin.

    Google Scholar 

  • Traxler R & Bernard J (1969) The utilization of n-alkanes by Pseudomonas aeruginosa under conditions of anaerobiosis. I. Preliminary observations. Int. Biodetn. Bull. 5: 21–25

    Google Scholar 

  • Wagner F, Zahn W & Bühring U (1967) 1-Hexadecene, an intermediate in the microbial oxidation of n-hexadecane in vivo and in vitro. Angew. Chem. Intern. Ed. Engl. 6: 359–360

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfurreducing bacteria. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 469–585). John Wiley & Sons, New York.

    Google Scholar 

  • White R & CoonM(1980) Oxygen activation by cytochrome P-450. Ann. Rev. Biochem. 49: 315–356

  • Yang W, Dostal L & Rosazza J (1993) Stereospecificity of microbial hydrations of oleic acid to 10-hydroxystearic acid. Appl. Environ. Microbiol. 58: 281–284

  • Zatsepina O & Buffett BA (1997) Phase equilibrium of gas hydrate: implications for the formation of hydrate in the deep sea-floor. Geophys. Res. Lett. 24: 1567–1570

    Google Scholar 

  • Zehnder A & Brock T (1979) Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420–432

    Google Scholar 

  • Zehnder A & Brock T (1980) Anaerobic methane oxidation: occurrence and ecology. Appl. Environ. Microbiol. 39: 194–204.

    Google Scholar 

  • Zengler K, Heider J, Rossello-Mora R & Widdel F (1999a) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch. Microbiol. 172: 204–212

    Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W & Widdel F (1999b) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269

    Google Scholar 

  • Zhou J, Fries MR, Chee-Sanford JC & Tiedje JM (1995) Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. Nov. Int. J. Syst. Bacteriol. 45: 500–506

    Google Scholar 

  • Zhang X. & Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl. Environ. Microbiol. 63: 4759–4764

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spormann, A.M., Widdel, F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11, 85–105 (2000). https://doi.org/10.1023/A:1011122631799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011122631799

Navigation