Skip to main content
Log in

The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The characteristic curd of cauliflower (Brassica oleracea var. botrytis L.) consists of proliferating, arrested inflorescence and floral meristems. However, the origins and events leading to the domestication of this important crop trait remain unclear. A similar phenotype observed in the ap1-1/cal-1 mutant of Arabidopsis thaliana led to speculation that the orthologous genes from B. oleracea may be responsible for this characteristic trait. We have carried out a detailed molecular and genetic study, which allows us to present a genetic model based on segregation of recessive alleles at specific, mapped loci of the candidate genes BoCAL and BoAP1. This accounts for differences in stage of arrest between cauliflower and Calabrese broccoli (B. oleracea var. italica Plenck), and predicts the intermediate stages of arrest similar to those observed in Sicilian Purple types. Association of alleles of BoCAL-a with curding phenotypes of B. oleracea is also demonstrated through a survey of crop accessions. Strong correlations exist between specific alleles of BoCAL-a and discrete inflorescence morphologies. These complementary lines of evidence suggest that the cauliflower curd arose in southern Italy from a heading Calabrese broccoli via an intermediate Sicilian crop type. PCR-based assays for the two key loci contributing to curd development are suitable for adoption in marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anthony, R.G., James P.E. and Jordan B.R. 1995. The cDNA sequence of a cauliflower apetala1/squamosa homolog. Plant Physiol 108: 441–442.

    Google Scholar 

  2. Bohuon E.J.R., Keith D.J., Parkin I.A.P., Sharpe A.G. and Lydiate D.J. 1996. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor. Appl. Genet. 92: 1–7.

    Google Scholar 

  3. Boukema I.W. van Hintum T.J.L. and Astley D. 1997. The creation and composition of the Brassica oleracea core collection. IPGRI Plant Genet. Res. Newsl. 111: 29–32.

    Google Scholar 

  4. Bowman J.L., Alvarez J., Weigel D., Meyerowitz E.M. and Smyth D. 1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721–743.

    Google Scholar 

  5. Branca F. and Iapichino G. 1997. Some wild and cultivated Brassicaceae exploited in Sicily as vegetables. Plant Genet. Res. Newsl. 110: 22–28.

    Google Scholar 

  6. Carr S.M. and Irish V.F. 1997. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 201: 179–188.

    Google Scholar 

  7. Clark J.M. 1988. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucl. Acids Res. 20: 9677–9686.

    Google Scholar 

  8. Crisp P. 1982. The use of an evolutionary scheme for cauliflowers in the screening of genetic resources. Euphytica 31: 725–734.

    Google Scholar 

  9. Crisp P. and Gray A.R. 1989. Breeding old and new forms of purple heading broccoli. Cruciferae News. 9: 17–18.

    Google Scholar 

  10. Crisp P. and Tapsell C.R. 1993. Cauliflower, Brassica oleracea L. In: Kalloo G. and Bergh B.O. (eds.), Genetic Improvement of Vegetable Crops, Pergamon Press, Oxford, pp. 157–178.

    Google Scholar 

  11. De Nettancourt D. 1977. Incompatibility in Angiosperms. Springer-Verlag, Berlin.

    Google Scholar 

  12. Doyle J.J. and Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  13. Emshwiller E. and Doyle J.J. 1998. Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae): nrDNA ITS data. Am. J. Bot 85: 975–985.

    Google Scholar 

  14. Fujime Y. 1983. Studies on thermal conditions of curd formation and development in cauliflower and broccoli, with special reference to abnormal curd development. Mem. Fac. Agric. Kagawa Univ. 40: 117–123.

    Google Scholar 

  15. Gray A.R. 1982. Taxonomy and evolution of broccoli (Brassica oleracea var. italica. Econ. Bot. 36: 397–410.

    Google Scholar 

  16. Gray A.R. 1989. Taxonomy and evolution of broccolis and cauliflower. Baileya 23: 28–46.

    Google Scholar 

  17. Gray A.R. and Crisp P. 1979. Autumn cauliflower. Rep. Natl Veg. Res. Stn. 1978: 57–58.

    Google Scholar 

  18. Irish V.F. and Sussex I.M. 1990. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2: 741–753.

    Google Scholar 

  19. Kempin S.A., Savidge B. and Yanofsky M.F. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522–525.

    Google Scholar 

  20. Kieffer M., Fuller M.P. and Jellings A.J. 1998. Explaining curd and spear geometry in broccoli, cauliflower and 'romanesco': quantitative variation in activity of primary meristems. Planta 206: 34–43.

    Google Scholar 

  21. Lowman A.C. and Purugganan M.D. 1999. Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. J. Hered 90: 514–520. 613

    Google Scholar 

  22. MAFF Ministry of Agriculture, Fisheries and Food. 1998. European Community quality standards for horticultural produce: No 2 fresh vegetables, pp. 7.1-7.6.

  23. Massie I.H. 1998. Patterns of variation in the Italian landrace cauliflower and broccoli. Ph.D. thesis, University of London.

  24. Massie I.H., Astley D and King G.J. 1996. Patterns of genetic diversity and relationships between regional groups and populations of Italian landrace cauliflower and broccoli (Brassica oleracea L. var. botrytis L. and var. italica Plenck). Acta Hort. 407: 45–53.

    Google Scholar 

  25. Munster T., Pahnke J., DiRosa A., Kim J.T., Martin W., Saedler H. and Theissen G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes pre-existing in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94: 2415–2420.

    Google Scholar 

  26. Olsen K.M. and Schaal B.A. 1999. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA 96: 5586–5591.

    Google Scholar 

  27. Pease M.S. 1996. Genetic studies in Brassica oleracea. J. Genet. 16: 363–385.

    Google Scholar 

  28. Purugganan M.D., Lowman A.C. and Suddith J. 2000. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 155: 855–862.

    Google Scholar 

  29. Rong-Lin W., Stec A., Hey J., Lukens L. and Doebley J. 1999. The limits of selection during maize domestication. Nature 398: 236–239.

    Google Scholar 

  30. Sadik S. 1962. Morphology of the curd of cauliflower. Am. J. Bot 49: 290–297.

    Google Scholar 

  31. Sebastian R.L., Howell E.C., King G.J., Marshall D.F. and Kearsey M.J. 1999. An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled haploid mapping populations. Theor. Appl. Genet 100: 75–81.

    Google Scholar 

  32. Shannon S. and Meeks-Wagner D.R. 1993. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5: 639–655.

    Google Scholar 

  33. Slocum M.K., Figdore S.S., Kennard W.C., Suzuki J.Y. and Osborn J.C. 1990. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor. Appl. Genet 80: 57–64.

    Google Scholar 

  34. Stam P. and van Ooijen J.W. 1995. JoinMapTM version 2.0; Software for the calculation of genetic linkage maps. CPRODLO, Wageningen.

    Google Scholar 

  35. Thompson K.F. 1976. Cabbages, kales etc. Brassica oleracea (Cruciferae). In: Simmonds N.W. (ed.), Evolution of Crop Plants, Longman, London, pp. 49–52.

    Google Scholar 

  36. Watts L.E. 1965. Investigations on the inheritance and responses to selection of riceyness in early summer cauliflower. Euphytica 15: 111–115.

    Google Scholar 

  37. Weigel D., Alvarez J., Smyth D.R., Yanofsky, M.F. and Meyerowitz E.M. 1992. LEAFY controls floral meristem identity in Arabidopsis; Cell 69: 843–859.

    Google Scholar 

  38. Yeager A.E. 1943. The characteristics of crosses between botanical varieties of cabbage, Brassica oleracea. Proc. Am. Soc. Hort. Sci. 43: 199–200.

    Google Scholar 

  39. Zeven A.C. 1996. Sixteenth to eighteenth century depictions of cole crops (Brassica oleracea L.), turnips (B. rapa L. cultivar group vegetable turnip) and radish (Raphanus sativus L.) from Flanders and the present day Netherlands. Acta Hort. 407: 29–33.

    Google Scholar 

  40. Zhou X., Jellen E.N. and Murphy J.P. 1999. Progenitor germplasm of domesticated hexaploid oat. Crop. Sci. 39: 1208–1214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, L.B., King, G.J. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Molecular Breeding 6, 603–613 (2000). https://doi.org/10.1023/A:1011370525688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011370525688

Navigation