Skip to main content
Log in

CD44-Mediated Oncogenic Signaling and Cytoskeleton Activation During Mammary Tumor Progression

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

CD44, a hyaluronan (HA)3 receptor, belongs to a family of transmembrane glycoproteins which exists as several isoforms. Cell surface expression of certain CD44 isoforms is closely correlated with the progression and prognosis of breast cancers. A number of angiogenic factors (e.g., VEGF and FGF-2) and matrix degrading enzymes (MMPs) are tightly complexed with CD44 isoforms, suggesting that they are involved in the onset of oncogenic signals required for breast tumor cell invasion and migration. Most importantly, interaction of extracellular matrix components (e.g., HA) with cells triggers the cytoplasmic domain of CD44 isoforms to bind its unique downstream effectors (e.g., the cytoskeletal protein ankyrin or various oncogenic signaling molecules-Tiam1, RhoA-activated ROK, c-Src kinase and p185HER2) and to coordinate intracellular signaling pathways (e.g., Rho/Ras signaling and receptor-linked/non-receptor-linked tyrosine kinase pathways), leading to a concomitant onset of multiple cellular functions (e.g., tumor cell growth, migration and invasion) and breast tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. B. Dickson and M. E. Lippman (1996). New approaches in the therapy of breast cancer. Breast Cancer Res. & Treatment 38:1-2.

    Google Scholar 

  2. W. G. Jiang, M. C. A. Puntis, and M. B. Hallett (1994). Molecular and cellular basis of cancer invasion and metastasis: Implications for treatment. British J. Surgery 81:1576-1590.

    Google Scholar 

  3. D. A. Lauffenburger and A. F. Horwitz (1996). Cell migration: A physically integrated molecular process. Cell 84:359-369.

    PubMed  Google Scholar 

  4. L. A. Goldstein, D. F. H. Zhou, L. J. Picker, C. N. Minty, R. F. Bargatze, J. F. Ding, and E. C. Butcher (1989). A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56:1063-1072.

    PubMed  Google Scholar 

  5. C. B. Underhill, S. J. Green, P. M. Comoglio, and G. Tarone (1987). The hyaluronate receptor is identical to a glycoprotein of 85,000 Mr. (gp85) as shown by a monoclonal antibody that interferes with binding activity. J. Biol. Chem. 262:13142-13146.

    PubMed  Google Scholar 

  6. T. C. Laurent and J. R. Fraser (1992). Hyaluronan. FASEB J. 6:2397-2404.

    PubMed  Google Scholar 

  7. S. J. Green, G. Tarone, and C. B. Underhill (1988). Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor. Exp. Cell. Res. 178:224-232.

    PubMed  Google Scholar 

  8. D. C. West and S. Kumar (1989). The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp. Cell. Res. 183:179-196.

    PubMed  Google Scholar 

  9. E. A. Turley, L. Austen, K. Vandeligt, and C. Clary (1991). Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J. Cell. Biol. 112:1041-1047.

    PubMed  Google Scholar 

  10. P. Rooney, S. Kumar, and M. Wang (1995). The role of hyaluronan in tumor neovascularization. Int J Cancer 60:632-636.

    PubMed  Google Scholar 

  11. G. R. Screaton, M. V. Bell, D. G. Jackson, F. B. Cornelis, U. Gerth, and J. I. Bell (1992). Genomic structure of DNA coding the lymphocyte homing receptor CD44 reveals 12 alternatively spliced exons. Proc. Natl. Acad. Sci. U. S. A. 89:12160-12164.

    PubMed  Google Scholar 

  12. V. B. Lokeshwar and L. Y. W. Bourguignon (1991). Posttranslational protein modification and expression of ankyrin binding site(s) in GP85(Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. J. Biol. Chem. 266:17983-17989.

    PubMed  Google Scholar 

  13. L. Y. W. Bourguignon, V. B. Lokeshwar, J. He, X. Chen, and G. J. Bourguignon (1992). ACD44-like endothelial transmembrane glycoprotein (GP116) Interacts with extracellular matrix and ankyrin. Mol. Cell. Biol. 12:4464-4471.

    PubMed  Google Scholar 

  14. V. B. Lokeshwar, N. Iida, and L. Y. W. Bourguignon (1996). The cell adhesion molecule, GP116 is a new CD44 variant (ex14/v10) involved in hyaluronic acid binding and endothelial cell proliferation. J. Biol. Chem. 271:23853-23864.

    PubMed  Google Scholar 

  15. P. Dall, K.-H. Heider, H.-P., Sinn, P. Skroch-Angel, G. Adolf, M. Kaufmann, P. Herrlich, and H. Ponta (1995). Comparison of immunohistochemistry and RT-PCR for detection of CD44v-expression, a new prognostic factor in human breast cancer. Int. J. Cancer. 60:471-477.

    PubMed  Google Scholar 

  16. N. Iida and L. Y. W. Bourguignon (1995). New CD44 splice variants associated with human breast cancers. J. Cell. Physiol. 162:127-133.

    PubMed  Google Scholar 

  17. M. Kaufmann, K. H. Heider, H. P. Sinn, G. von Minckwitz, H. Ponta, and P. Herrlich (1995). CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345:615-619.

    PubMed  Google Scholar 

  18. M. S. Sy, H. Mori, and D. Liu (1997). CD44 as a marker in human cancers. Curr. Opin. Oncol. 9:108-112.

    PubMed  Google Scholar 

  19. E. Kalish, N. Iida, F. L. Moffat, and L. Y. W. Bourguignon (1999). A new CD44v3-containing isoform is involved in tumor cell migration and human breast cancer progression. Front Biosci. 4:1-8.

    Google Scholar 

  20. E. Horst, C. J. Meijer, T. Radaszkiewicz, G. J. Ossekoppele, J. H. Van Krieken, and S. T. Pals (1990). Adhesion molecules in the prognosis of diffuse large-cell lymphoma: Expression of a lymphocyte homing receptor (CD44), LFA (CD11a/18), and ICAM-1 (CD54). Leukemia 4:595-599.

    PubMed  Google Scholar 

  21. S. Jalkanen, H. Joensuu, K. O. Soderstrom, and P. Klemi (1991). Lymphocyte homing and clinical behavior of non-Hodgkin's lymphoma. J. Clin. Invest. 87:1835-1840.

    PubMed  Google Scholar 

  22. L. Y. W. Bourguignon, H. B. Zhu, A. Chu, L. Zhang, and Mien-Chie Hung (1997). Interaction between the adhesion receptor, CD44 and the oncogene product, p185HER2, pomotes human ovarian tumor cell activation. J. Biol. Chem. 272:27913-27918.

    PubMed  Google Scholar 

  23. D. Zhu and L. Y. W. Bourguignon (1998). The ankyrin-binding domain of CD44s is involved in regulating hyaluronic acid-mediated function and prostate tumor cell transformation. Cell Motil. Cytoskel. 39:209-222.

    Google Scholar 

  24. L. Y. W. Bourguignon, H. Zhu, L. Shao, and Y. W. Chen (2001). CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid (HA)-dependent ovarian tumor cell migration. J. Biol. Chem. 276:7327-7336.

    PubMed  Google Scholar 

  25. D. J. Slamon, G. Williams, L. A. Jones, J. A. Holt, S. G. Wong, D. E. Keith, W. J. Levin, S. G. Stuart, J. Udove, A. Ullrich, and M. F. Press (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707-710.

    PubMed  Google Scholar 

  26. D. K. Luttrell, A. Lee, T. J. Lansing, R. M. Crosby, K. D. Jung, D. Willard, M. Luther, M. Rodriguez, J. Berman, and T. M. Gilmer (1994). Involvement of pp60c-Src with two major signaling pathways in human breast cancer. Proc. Natl. Acad. Sci. U.S.A. 91:83-87.

    PubMed  Google Scholar 

  27. N. Rahimi, W. Hung, E. Tremblay, R. Saulnier, and B. Elliott (1998). c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J. Biol. Chem. 273:33714-33721.

    PubMed  Google Scholar 

  28. D. Naor, R. V. Sionov, and D. Ish-Shalom (1997). CD44: structure, function, and association with the malignant process. Adv. Cancer. Res. 71:241-319.

    PubMed  Google Scholar 

  29. D. Liu and M. S. Sy (1996). A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hylauronic acid. J. Exp. Med. 183:1987-1994.

    PubMed  Google Scholar 

  30. L. Y. W. Bourguignon, E. L. Kalomiris, and V. B. Lokeshwar (1991). Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J. Biol. Chem. 266:11761-11765.

    PubMed  Google Scholar 

  31. R. Karni, R. Jove, and A. Levitzki (1999). Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EFG and HER-2 receptors. Oncogene 18:4654-4662.

    PubMed  Google Scholar 

  32. I. Dikic, G. Tokiwa, S. Lev, S. A. Courtneidge, and J. Schlessinger (1996). A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383:547-550.

    PubMed  Google Scholar 

  33. G. Koopman, K. H. Heider, E. Horst, G. R. Adolf, F. van den Berg, H. Ponta, and P. Herrlich (1993). Activated human lymphocytes and aggressive non-Hodgkin's lymphomas express a homologue of the rat metastasis-associated variant of CD44. J. Exp. Med. 177:897-904.

    PubMed  Google Scholar 

  34. U. Gunthert, M. Hofmann, M, Rudy, S. Reber, M. Zoller, I. Haussmann, and S. Matzku (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13-24.

    PubMed  Google Scholar 

  35. K. Friedrichs, F. Franke, B.-W. Lisboa, G. Kugler, I. Gille, H.-J. Terpe, F. Holzel, H. Maass, and U. Gunthert (1995). CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res. 55:5424-5433.

    PubMed  Google Scholar 

  36. N. Iida and L. Y. W. Bourguignon (1997). Coexpression ofCD44 Variant (v10/ex 14) and CD44s in human mammary epithelial cells promotes tumorinogenesis. J. Cell. Physiol. 171:152-160.

    PubMed  Google Scholar 

  37. I. Stamenkovic, M. Amiot, J. M. Pesando, and B. Seed (1991). The hemopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyalurononan-bearing cells. EMBO J. 10:343-347.

    PubMed  Google Scholar 

  38. M. Bernfield, M. Gotte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, and M. Zako (1999) Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729-777.

    PubMed  Google Scholar 

  39. K. Bennett, D. G. Jackson, J. C. Simon, E. Tanczos, R. Peach, B. Modrell, I. Stamenkovic, G. Plowman, and A. Aruffo (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. J. Cell. Biol. 128:687-698.

    PubMed  Google Scholar 

  40. H. U. Grimme, C. C. Termeer, K. L. Bennett, J. M. Weiss, E. Schopf, A. Aruffo, and J. C. Simon (1999). Colocalization of basic fibroblast growth factor and CD44 isoforms containing the variable spliced exon v3 (CD44v3) in normal skin and in epidermal skin cancers. British. J. Dermatol. 141:824-832.

    Google Scholar 

  41. L. Y. W. Bourguignon, D. Zhu, and H. Zhu (1998). CD44 isoform-cytoskeleton interaction in oncogenic signaling and tumor progression. Front Biosci. 3:637-649.

    Google Scholar 

  42. H. F. Dvorak, L. F. Brown, M. Detmar, and A. M. Dvorak (1995). Review: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146:1029-1039.

    PubMed  Google Scholar 

  43. A. T. W. Cheung, L. J. T. Young, P. C. Y. Chen, C. Y. Chao, A. Ndoye, P. A. Barry, W. J. Muller, and R. D. Cardiff (1997). Microcirculation and metastasis in a new mammary tumor model system. Int. J. Oncol. 11:69-77.

    Google Scholar 

  44. L. Y. W. Bourguignon, Z. Gunja-Smith, N. Iida, H. B. Zhu, L. J. T. Young, W. Muller, and R. D. Cardiff (1998) CD44v3,8–10-cytoskeleton interaction is involved in matrix matalloproteinase (MMP-9) function and tumor cell migration and invasion in metastatic breast tumor cells. J. Cell. Physiol. 176:206-215.

    PubMed  Google Scholar 

  45. L. A. Liotta (1984). Tumor invasion and metastasis: Role of the basement membrane. Am. J. Pathol. 117:339-348.

    PubMed  Google Scholar 

  46. W. T. Chen (1996). Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme & Protein 49:59-71.

    Google Scholar 

  47. L. Y. W. Bourguignon (1996). Interaction between membrane-cytoskeleton and CD44 during lymphocyte signal transduction and cell adhesion. In W. J. Nelson (ed.), Current Topics in Membranes 43:293-312.

  48. V. B. Lokeshwar, N. Fregien, and L. Y. W. Bourguignon (1994). Ankyrin binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function. J. Cell. Biol. 126:1099-1109.

    PubMed  Google Scholar 

  49. V. Bennet (1992). Ankyrins. J. Biol. Chem. 267:8703-8706.

    PubMed  Google Scholar 

  50. M. A. De Matteis and J. S. Morrow (1998). The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell. Biol. 10:542-549.

    PubMed  Google Scholar 

  51. L. L. Peters, K. M. John, F. M. Lu, E. M. Eicher, A. Higgins, M. Yialamas, L. C. Turtzo, A. J. Otsuka, and S. E. Lux (1995). Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J. Cell. Biol. 130:313-330.

    PubMed  Google Scholar 

  52. L. Davis and V. Bennett (1990). Mapping the binding sites of human erythrocyte ankyrin of the anion exchanger and spectrin. J. Biol. Chem. 265:10589-10596.

    PubMed  Google Scholar 

  53. O. S. Platt, S. E. Lux, and J. F. Falcone (1993). A highly conserved region of human erythrocyte ankyrin contains the capacity to bind spectrin. J. Biol. Chem. 268:24421-24426.

    PubMed  Google Scholar 

  54. D. Zhu and L. Y. W. Bourguignon (2000). Interaction between CD44 and the repeat domain of ankyrin promotes hyaluronic acid (HA)-mediated ovarian tumor cell migration. J. Cell. Physiol. 183:182-195.

    PubMed  Google Scholar 

  55. L. Y. W. Bourguignon, H. Zhu, L. Shao, and Y. W. Chen (2000). Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J. Cell. Biol. 150:177-191.

    PubMed  Google Scholar 

  56. L. Y. W. Bourguignon, H. B. Zhu, N. Iida, and L. Shao (1998). The cytoplasmic deletion (dominant-negative) mutant of CD44s down-regulates hyaluronan-mediated Tiam1-Rac1 signaling and IL-8 gene activation in human mammary epithelial cells. Mol. Biol. Cell. 9:301a.

    Google Scholar 

  57. A. Hall (1998). Rho GTPase and the actin cytoskeleton. Science 279:509-514.

    Google Scholar 

  58. L. Y. W. Bourguignon, H. Zhu, L. Shao, D. Zhu, and Y. W. Chen (1999). Rho-Kinase (ROK) promotes CD44v3,8–10-Ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell. Motil. Cytoskel. 43:269-287.

    Google Scholar 

  59. M. Amano, M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura, and K. Kaibuchi (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rhokinase). J. Biol. Chem. 271:20246-20249.

    Article  PubMed  Google Scholar 

  60. N. Kimura, M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, J. Feng, T. Nakano, K. Okawa, K. Iwamatsu, and K. Kaibuchi (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245-248.

    Google Scholar 

  61. M. Amano, K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, and K. Kaibuchi (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308-1311.

    PubMed  Google Scholar 

  62. A. J. Ridley, H. F. Paterson, C. L. Johnston, D. Diekman, and A. Hall (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401-410.

    PubMed  Google Scholar 

  63. F. Michiels, G. G. M. Habets, J. C. Stan, R. A. van der Kammen, and J. G. Collard (1995). A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375:338-340.

    PubMed  Google Scholar 

  64. G. G. M. Habets, E. H. M. Scholtes, D. Zuydgeest, R. A. van der Kammen, J. C. Stam, A. Berns, and J. G. Collard (1994). Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77:537-549.

    Article  PubMed  Google Scholar 

  65. G. G. M. Habets, R. A. van der Kammen, J. C. Stam, F. Michiels, and J. G. Collard (1995). Sequence of the human invasioninducing Tiam-1 gene, its conservation in evolution and its expression in tumor cell lines of different tissue origin. Oncogene 10:1371-1376.

    PubMed  Google Scholar 

  66. L. Y. W. Bourguignon, H. Zhu, L. Shao, and Y. W. Chen (2000). CD44 interaction with Tiam1 promotes Rac1 signaling and hyaluronic acid (HA)-mediated breast tumor cell migration. J. Biol. Chem. 275:1829-1838.

    PubMed  Google Scholar 

  67. S. Oliferenko, I. Kaverina, J. V. Small, and L. A. Huber (2000). Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J. Cell. Biol. 148:1159-1164.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourguignon, L.Y.W. CD44-Mediated Oncogenic Signaling and Cytoskeleton Activation During Mammary Tumor Progression. J Mammary Gland Biol Neoplasia 6, 287–297 (2001). https://doi.org/10.1023/A:1011371523994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011371523994

Navigation