Skip to main content
Log in

MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We have investigated the gelatinase profiles and invasiveness of clonal tumour sublines derived from a spontaneously arising mammary tumour in a Balb/cfC3H mouse. The 67NR, 66cl4 and 4T1.2 sublines have low, intermediate and high metastatic potential respectively. In Boyden chamber studies, Matrigel invasion was seen to be progressively higher in the more metastatic lines 4T1.2>66cl4>67NR, consistent with MMP-2 activation potential, MMP-9 secretion, and migration over either type I or IV collagen, which were low in both 67NR and 66cl4 cells compared to 4T1.2 cells. These attributes are consistent with those seen in human breast cancer cell lines which appear to have undergone an epithelial-mesenchymal transition (EMT) as indicated by vimentin expression. We were, however, surprised to find vimentin expression, MT1-MMP expression and stellate Matrigel outgrowth in the non-invasive, non-metastatic 67NR cells, indicating that they had undergone an EMT despite not being invasive. We conclude that the EMT is manifested to differing degrees in these three clonal cell lines, and that the 67NR cells have either undergone a partial EMT or have since lost certain important attributes of the EMT-derived phenotype. This model should prove useful in further characterizing the regulation of MT1-MMP mediated MMP-2 activation and delineating the EMT in breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matrisian LM. Metalloproteinases and their inhibitors in tissue remodeling. Trends Genet 1990; 6: 121–5.

    Article  PubMed  CAS  Google Scholar 

  2. Testa JE, Quigley JP. The role of urokinase-type plasminogen activator in aggressive tumour cell behavior. Cancer Metastasis Rev 1990; 9: 353–67.

    Article  PubMed  CAS  Google Scholar 

  3. Sloane BF, Moin K, Lah TT. Regulation of lysosomal endopeptidases in malignant neoplasia. In Pretlow TG and Pretlow TP (eds): Biochemical and Molecular Aspects of Selected Cancers. New York: Academic Press 1994; Vol. 2; 411–66.

    Google Scholar 

  4. Terranova VP, Hujanen ES, Martin GR. Basement membrane and the invasive activity of metastatic tumour cells. J Natl Cancer Inst 1986; 77: 311–6.

    PubMed  CAS  Google Scholar 

  5. Basset P, Bellocq JP, Wolf C et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature (London) 1990; 348: 699–704.

    Article  CAS  Google Scholar 

  6. Pyke C, Ralfkiaer E, Tryggvason K et al. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am J Pathol 1993; 142: 359–65.

    PubMed  CAS  Google Scholar 

  7. Heppner KJ, Matrisian LM, Jensen RA et al. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor induced host response. Am J Pathol 1996; 149: 273–82.

    PubMed  CAS  Google Scholar 

  8. Nielsen BS, Timshel S, Kjeldsen L et al. 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in human colon cancer. Int J Cancer 1996; 65: 57–62.

    Article  PubMed  CAS  Google Scholar 

  9. Gilles C, Thompson EW. The epithelial to mesenchymal transition and metastatic progession in carcinomas. Breast J 1996; 2: 83–96.

    Google Scholar 

  10. Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res 1994; 32: 73–84.

    Article  CAS  Google Scholar 

  11. Miller BE, Roi LD, Howard LM, Miller FR. Quantitative selectivity of contact mediated intercellular communication in a metastatic mouse mammary tumor line. Cancer Res 1983; 43: 4102–7.

    PubMed  CAS  Google Scholar 

  12. Lelekakis M, Moseley JM, Martin TJ et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 1999; 17: 163–70.

    Article  PubMed  CAS  Google Scholar 

  13. Sung V, Cattell DA, Bueno JM et al. Human breast cancer cell metastasis to long bone and soft organs of nude mice: A quantitative assay. Clin Exp Metastasis 1997; 15: 173–82.

    Article  PubMed  CAS  Google Scholar 

  14. Kjonniksen I, Winderen M, Brunland O et al. Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats. Cancer Res 1994; 54: 1715–9.

    PubMed  CAS  Google Scholar 

  15. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–405.

    PubMed  CAS  Google Scholar 

  16. Yu M. Sato H. Seiki M. et al. Complex regulation of membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation by concanavalin A in MDA-MB-231 human breast cancer cells. Cancer Res 1995; 55: 3272–7.

    PubMed  CAS  Google Scholar 

  17. Sato H, Takino T, Okada Y et al. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature (London) 1994; 370: 61–5.

    Article  CAS  Google Scholar 

  18. Stetler-Stevenson WG. Type IV collagenases in tumor invasion and metastasis. Cancer Met Rev 1990; 9: 289–303.

    Article  CAS  Google Scholar 

  19. Pulyaeva H, Bueno J, Polette M et al. MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis 1997; 15: 111–20.

    Article  PubMed  CAS  Google Scholar 

  20. Sato H, Seiki M. Membrane-type-matrix metalloproteinase. J Biochem 1996; 119: 209–15.

    PubMed  CAS  Google Scholar 

  21. Sommers CL, Thompson EW, Torri J et al. Absence of cell adhesion molecule uvomorulin expression in invasive human breast cancer cell lines. Cell Growth Differentiation 1991; 2: 365–72.

    PubMed  CAS  Google Scholar 

  22. Thompson EW, Paik S, Brunner N et al. Association of increased basement invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 1992; 150: 534–44.

    Article  PubMed  CAS  Google Scholar 

  23. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat 1995; 154: 8–20.

    Article  PubMed  CAS  Google Scholar 

  24. Bae SN, Arand G, Azzam H et al. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-based in vitro assays. Breast Cancer Res Treat 1993; 24: 241–55.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson EW, Torri J, Sabol M et al. Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metast 1994; 12: 181–94.

    Article  CAS  Google Scholar 

  26. Giuncluglio D, Culty M, Fassina G et al. Invasive phenotype of MCF-10A cells over expressing c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer 1995; 63: 815–22.

    Google Scholar 

  27. Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991; 5: 2145–54.

    PubMed  CAS  Google Scholar 

  28. Murphy G, Cockett MF, Ward RV et al. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and-2 and punctuated metalloproteinase (PUMP). Biochem J 1991; 277: 277–9.

    PubMed  CAS  Google Scholar 

  29. Sires UI, Griffin GL, Brockelman TJ et al. Degradation of entactin by matrix metalloproteinases: Susceptibility to matrilysin and identification of cleavage sites. J Biol Chem 1993; 268: 2069–74.

    PubMed  CAS  Google Scholar 

  30. Newell KJ, Witty JP, Rodgers WH et al. Expression and localization of matrix-degrading metalloproteinases during colorectal tumorigenesis. Mol Carcinog 1994; 10: 199–206.

    PubMed  CAS  Google Scholar 

  31. Kawano N, Osawa H, Ito T et al. Expression of gelatinase A, tissue inhibitor of metalloproteinase-2, matrilysin and trypsin(ogen) in lung neoplasms: an immmunohistochemical study. Hum Pathol 1997; 28: 613–22.

    Article  PubMed  CAS  Google Scholar 

  32. Rha S, Kim JH, Roh JK et al. Sequential production and activation of matrix metalloproteinase-9 (MMP-9) with breast cancer progression. Breast Cancer Res Treat 1997; 43: 175–81.

    Article  PubMed  CAS  Google Scholar 

  33. Wood M, Fudge K, Mohler JL, et al. In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cells. Clin Exp Metastasis 1997; 15: 246–58.

    Article  PubMed  CAS  Google Scholar 

  34. Sugiura Y, Shimada H, Seeger RC et al. Matrix metalloproteinases-2 and-9 are expressed in human neuroblastoma: Contribution of stromal cells to their production and correlation with metastasis. Cancer Res 1998; 58: 2209–1.

    PubMed  CAS  Google Scholar 

  35. Nakajima M, Welch DR, Wynn DM et al. Serum and plasma Mr 92,000 progelatinase levels correlate with spontaneous metastasis of rat 13762NF mammary adenocarcinoma. Cancer Res 1993; 53: 5802–7.

    PubMed  CAS  Google Scholar 

  36. Zucker S, Lysik RM, Zarrabi MH et al. Mr 92,000 type collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res 1993; 53: 140–6.

    PubMed  CAS  Google Scholar 

  37. Ueda Y, Imai K, Tsuchiya H et al. Matrix metalloproteinase 9 (gelatinase B) is expressed in multinucleated giant cells of human giant cell tumor of bone and is associated with vascular invasion. Am J Pathol 1996; 148: 611–22.

    PubMed  CAS  Google Scholar 

  38. Zeng ZS, Huang Y, Cohen AM et al. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 1996; 14: 3133–40.

    PubMed  CAS  Google Scholar 

  39. Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA. 1994; 91: 4293–7.

    Article  PubMed  CAS  Google Scholar 

  40. Azzam HS, Arand GA, Lippman ME et al. MMP-2 activation potential associates with metastatic progression in human breast cancer cell lines, and is independent of MMP-2 production. J Natl Cancer Inst 1993; 85: 1758–64.

    PubMed  CAS  Google Scholar 

  41. Yamamoto M, Mohanam S, Sawaya R et al. Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 1996, 56: 384–92.

    PubMed  CAS  Google Scholar 

  42. Ogata Y, Enghild JJ, Nagase H. Matrix metalloproteinase 3 (stomelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 1992; 267: 3581–4.

    PubMed  CAS  Google Scholar 

  43. Fridman R, Toth M, Pena D et al. Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res 1995; 55: 2548–55.

    PubMed  CAS  Google Scholar 

  44. Okada Y, Gonoji Y, Naka K et al. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT1080 human fibrosarcoma cells. J Biol Chem 1992; 267: 21712–9.

    PubMed  CAS  Google Scholar 

  45. Menashi S, Fridman R, Desrevieres S et al. Regulation of 92 kDa gelatinase B activity in the extracellular matrix by tissue kallikrein. Ann NY Acad Sci 1994; 732: 466–8.

    PubMed  CAS  Google Scholar 

  46. Atkinson SJ, Crabbe T, Cowell S et al. Intermolecular autocatalytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem 1995; 270: 30479–85.

    Article  PubMed  CAS  Google Scholar 

  47. Overall CM, Sodek J. Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and PUMP-1 is accompanied by the tissue inhibitor of matrix metalloproteinases. J Biol Chem 1990; 265: 21141–51.

    PubMed  CAS  Google Scholar 

  48. Strongin AY, Marmer BL, Grant GA et al. Plasma membrane dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem 1993; 268: 14033–9.

    PubMed  CAS  Google Scholar 

  49. Brown PD, Bloxide RE, Stuart NSA et al. Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small lung carcinoma. J Natl Cancer Inst 1993; 85: 574–8.

    PubMed  CAS  Google Scholar 

  50. Azzam HS, Thompson EW. Collagen induced activation of the Mr 72,000 type IV collagenase in normal and malignant human fibroblastoid cells. Cancer Res 1992; 52: 4540–4.

    PubMed  CAS  Google Scholar 

  51. Strongin AY, Collier I, Bannikov G et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloproteinase. J Biol Chem 1995; 270: 5331–8.

    Article  PubMed  CAS  Google Scholar 

  52. Brooks PC, Stromblad S, Sanders LC et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasion cells by interaction with integrin αvβ3. Cell 1996; 85: 683–93.

    Article  PubMed  CAS  Google Scholar 

  53. Deryugina EI, Bourdon MA, Jungwirth K et al. Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer 2000; 86(1): 15–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tester, A.M., Ruangpanit, N., Anderson, R.L. et al. MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 18, 553–560 (2000). https://doi.org/10.1023/A:1011953118186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011953118186

Navigation