Skip to main content
Log in

Comparison of the eIF-2α Homologous Proteins of Seven Ranaviruses (Iridoviridae)

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The α-subunit of the eukaryotic initiation factor 2 (eIF-2α) is a key component of the translation machinery of the cell. In response to cellular stress such as viral infections, eIF-2α is phosphorylated by double-stranded RNA-dependent protein kinase (PKR) leading to the inhibition of cellular protein synthesis. The importance of eIF-2α as a regulatory mechanism for protein synthesis is illustrated by the wide variety of strategies employed by viruses to down-regulate PKR. Thus, Vaccinia virus encodes K3L protein, which resembles eIF-2α and acts as a pseudo-substrate inhibitor of PKR. Nucleotide sequencing of the genome of epizootic haematopoietic necrosis virus (EHNV), a member of the genus ranavirus of Iridoviridae, has revealed an eIF-2α equivalent gene. We have cloned and sequenced eIF-2α genes of several iridoviruses of fishes and frogs. The eIF-2α open reading frames and deduced proteins of the iridoviruses investigated exhibit a high degree of homology of both nucleotide and amino acid sequences. At the N-terminus, the iridoviral eIF-2α shows significant homology to the N-termini of cellular initiation factor 2-α of various species, to full-length poxviral eIF-2α proteins, and to the S1 domain of ribosomal proteins. Comparison of amino acid sequences of corresponding iridoviral proteins with eIF-2α homologous proteins of poxviruses and eukaryotes has revealed a high conservation of motifs. A phylogenetic analysis of eukaryotic eIF-2α and poxvirus and iridovirus eIF-2α sequences has demonstrated the relationship of these iridoviruses. In order to investigate the role of the eIF-2α equivalent, respective genes have been expressed in prokaryotic and eukaryotic (insect, fish and chicken cell) systems. The iridoviral eIF-2α protein has a molecular weight of 31 kDa and is cytoplasmic. The cellular and viral protein synthesis of iridoviruses is probably regulated by a mechanism similar to that of Vaccinia virus. Frog-virus 3, the type species of the genus ranavirus of Iridoviridae, has a unique translational efficiency and, moreover, down-regulates the cellular protein synthesis of infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mouat M.F. and Manchester K., Mol Cell Biochem 183, 69–78, 1998.

    Google Scholar 

  2. Asano K., Clayton J., Shalev A., and Hinnebusch A.G., Genes Dev 14, 2534–2546, 2000.

    Google Scholar 

  3. Samuel C.E., J Biol Chem 268, 7603–7606, 1993.

    Google Scholar 

  4. Pain M.M., Eur J Biochem 236, 747–771, 1996.

    Google Scholar 

  5. Kimball S.R., Int J Biochem Cell Biol 31(1), 25–29, 1999.

    Google Scholar 

  6. Goebel S.J., Johnson G.P., Perkus M.E., Davis S.W., Winslow J.P., and Paoletti E., Virology 179, 247–266, 1990.

    Google Scholar 

  7. Massung R.F., Jayarama V., and Moyer R.W., Virology 197, 511–528, 1993.

    Google Scholar 

  8. Beattie E., Tartaglia J., and Paoletti E., Virology 183, 419–422, 1991.

    Google Scholar 

  9. Lee S.B. and Esteban M., Virology 197, 491–496, 1994.

    Google Scholar 

  10. Srivastava S.P., Kumar K.O., and Kaufman R.K., J Biol Chem 273, 2416–2423, 1998.

    Google Scholar 

  11. Gil J., Alcami J., and Esteban M., Mol Cell Biol 19, 4653–4663, 1999.

    Google Scholar 

  12. Bycroft M., Hubbard T.J., Proctor M., Freund S.M., and Murzin A.G., Cell 88, 235–242, 1997.

    Google Scholar 

  13. Draper D.E. and Reynaldo L.P., Nucleic Acids Res 27, 381–388, 1999.

    Google Scholar 

  14. Yu Y., Bearzotti M., Vende P., Ahne W., and Bremont M., Virus Res 63, 53–63, 1999.

    Google Scholar 

  15. Chinchar G.V. and Yu W., Virus Res 16, 163–174, 1990.

    Google Scholar 

  16. Chinchar G.V. and Yu W., Biochem Biophys Res Comm 172, 1357–1363, 1990.

    Google Scholar 

  17. Chinchar G.V. and Dholakia J.N., Virus Res 14, 207–224, 1989.

    Google Scholar 

  18. Van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L., Carstens E.B., Estes M.K., Lemon S.M., Maniloff J., Mayo M.A., McGeoch D.J., Pringle C.R., and Wickner R.B., Virus Taxonomy Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, New York, San Diego, 2000.

    Google Scholar 

  19. Ernst H., Duncan R.F., and Hershey J.W., J Biol Chem 262, 1206–1212, 1987.

    Google Scholar 

  20. Green S.R., Fullekrug J., Sauer K., and Tuite M.F., Biochim Biophys Acta 1090, 277–280, 1991.

    Google Scholar 

  21. Qu S. and Cavener D.R., Gene 140, 239–242, 1994.

    Google Scholar 

  22. Ruepp A., Graml W., Santos-Martinez M.L., Koretke K.K., Volker C., Mewes H.W., Frishman D., Stocker S., Lupas A.N., and Baumeister W., Nature 407, 508–513, 2000.

    Google Scholar 

  23. Boursnell M.E., Foulds I.J., Campbell J.I., and Binne M.M., J Gen Virol 69, 2995–3003, 1988.

    Google Scholar 

  24. Shchelkunov S.N., Blinov V.M., Resenchuck S.M., Totmenin A.V., Olenina L.V., Chirikova G.B., and Sandakhchiev L.S., Virus Res 34, 207–236, 1994.

    Google Scholar 

  25. Shchelkunov S.N., Safronov P.F., Totmenin A.V., Petrov N.A., Ryaszankina O.I., Gutorov V.V., and Kotwal G.J., Virology 243, 432–460, 1998.

    Google Scholar 

  26. Willer D.O., Mc Fadden G., and Evans D.H., Virology 264, 319–343, 1999.

    Google Scholar 

  27. Cameron C., Hota-Mitchell S., Chen L., Barrett J., Cao J.X., Macaulay C., Willer D., Evans D., and Mc Fadden G., Virology 264, 298–318, 1999.

    Google Scholar 

  28. Langdon J.S., Humphrey J.D., Williams L.D., Hyatt A.D., and Westbury H.A., J Fish Dis 9, 263–268, 1986.

    Google Scholar 

  29. Pozet F., Morand M., Moussa A., Torhy C., and deKinkelin P., Dis Aquat Org 14, 35–42, 1992.

    Google Scholar 

  30. Bovo G., Comuzi M., De Mas S., Ceschia G., Giorgetti G., Giacometti P., and Cappellozza E., Boll Soc It Patol Ittica 11, 3–10, 1993.

    Google Scholar 

  31. Ahne W., Schlotfeldt H.J., and Thomsen I., J. Vet Med B, 333–336, 1989.

    Google Scholar 

  32. Granoff A., Came P.E., and Breeze D.C., Ann N Y Acad Sci 126, 237–255, 1966.

    Google Scholar 

  33. Fijan N., Matasin Z., Petrinec Z., Valpotic I., and Zwillenberg L.O., Veterinarski Arhiv 61, 151–158, 1991.

    Google Scholar 

  34. Sambrook J., Fritsch E.F., and Maniatis T., Molecular Cloning—A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989.

  35. Kyte J. and Doolittle R.F., J Mol Biol 157, 105–132, 1982.

    Google Scholar 

  36. Higgins D.G., Methods Mol Biol 25, 307–18, 1994.

    Google Scholar 

  37. Bairoch A., Bucher P., and Hofmann K., Nucleic Acids Res 25, 217–221, 1997.

    Google Scholar 

  38. Felsenstein J., Cladistics 5, 164–166, 1989.

    Google Scholar 

  39. Felsenstein J., PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, 1993.

    Google Scholar 

  40. Fijan N., Sulimanovic D., Bearzotti M., Muzinic D., Zwillenberg L.O., Chilmonczyk S., Vautherot J.F., and de Kinkelin P., Ann Virol 134E, 207–220, 1983.

    Google Scholar 

  41. Araki K., Nagoya H., and Onozato H., Bull Natl Inst Aquaculture 10, 1–9, 1991.

    Google Scholar 

  42. Laemmli U.K., Nature (London) 227, 680–685, 1970.

    Google Scholar 

  43. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., and Lipman D.J., Nucleic Acids Res 25, 3389–3402, 1997.

    Google Scholar 

  44. Kawagishi-Kobayashi M., Silverman J.B., Ung T.L., and Dever T.E., Mol Cell Biol 17, 4146–4158, 1997.

    Google Scholar 

  45. Kawagishi-Kobayashi M., Cao C., Lu J., Ozato K., and Dever T.E., Virol 276, 424–434, 2000.

    Google Scholar 

  46. Ahne W., Bearzotti M., Bremont M., and Essbauer S., J Vet Med B45, 373–383, 1998.

    Google Scholar 

  47. Mao J., Dedrick R.P., and Chinchar V.G., Virology 229, 212–220, 1997.

    Google Scholar 

  48. Tidona C.A., Schnitzler P., Kehm R., and Darai G., Virus Genes 16, 59–66, 1998.

    Google Scholar 

  49. Elliott R.M. and Kelly D.C., J Virology 33, 28–51, 1980.

    Google Scholar 

  50. Nielsen H., Engelbrecht J., Brunak S., and von Heijne G., Protein Eng. 10, 1–6, 1997.

    Google Scholar 

  51. Gale M., Tan S.-T., Wambach M., and Katze M.G., Mol Cell Biol 16, 4172–4181, 1996.

    Google Scholar 

  52. Sharp T.V., Witzel J.E., and Jagus R., Eur J Biochem 250, 85–91, 1997.

    Google Scholar 

  53. Davies M.V., Elroy-Stein O., Jagus R., Moss B., and Kaufman R.J., J Virol 66, 1943–1950, 1992.

    Google Scholar 

  54. Granoff A., Prog Med Virol 30, 187–198, 1984.

    Google Scholar 

  55. Cordier O., Aubertin A.M., Lopez C., and Tondre L., Ann Virol (Pasteur) 132E, 25–39, 1981.

    Google Scholar 

  56. Aranda M. and Maule A., Virol 243, 261–267, 1998.

    Google Scholar 

  57. Carroll K., Elroy-Stein O., Moss B., and Jagus R., J Biol Chem 268, 12837–12842, 1993.

    Google Scholar 

  58. Jagus R. and Gray M.M., Biochimie 76, 779–791, 1994.

    Google Scholar 

  59. Schmitt M.P., Tondre L., and Aubertin A.M., Nucleic Acids Res. 18, 4000, 1990.

    Google Scholar 

  60. Alcami A. and Koszinowski U.H., Immunol Today 21, 447–455, 2000.

    Google Scholar 

  61. Smith G.L., Symons J.A., and Alcami A., Seminars in Virol 8, 409–418, 1998.

    Google Scholar 

  62. Metz D.H. and Esteban M., Nature (London) 238, 385–388, 1972.

    Google Scholar 

  63. Paez E. and Esteban M., Virol 134, 12–28, 1984.

    Google Scholar 

  64. Esteban M., Benavente J., and Paez E., J Gen Virol 67, 809–812, 1986.

    Google Scholar 

  65. Lab M., Koehren F., and Kirn A., C R Acad Sci Hebd Seances Acad Sci D71, 1227–30, 1970.

    Google Scholar 

  66. Schultz U., Kaspers B., Rinderle C., Sekellick M.J., Marcu P.I., and Staeheli P., Eur J Immunol 25, 847–851, 1995.

    Google Scholar 

  67. Enriquez R., Charakterisierung dreier Fisch-Iridovirus-Isolate vom Flußwels (Silurus glanis), Katzenwels (Ictalurus melas) und Flußbarsch (Perca fluviatilis). Thesis. Veterinary School, University of Munich (German), 1993.

    Google Scholar 

  68. Chalfie M. and Kain S., GFP—Green Fluorescent Protein Properties, Applications, and Protocols. Wiley-Liss, Inc., New York, 1998.

    Google Scholar 

  69. Shors S.T., Beattie E., Paoletti E., Tartaglia J., and Jacobs B.L., J Interferon Cytokine res. 18, 721–729, 1998.

    Google Scholar 

  70. Iwama G., and Nakanishi T., The Fish Immune System, Organism, Pathogen and Environment. Academic Press, San Diego, 1996.

    Google Scholar 

  71. Trobridge G.D., Chiou P.P., Kim C.H., and Leong J.A., Dis Aquat Org 30, 91–98, 1997.

    Google Scholar 

  72. Lorenzen K., Carstensen B., and Olesen N.J., Dis Aquat Org 37, 81–88, 1999.

    Google Scholar 

  73. Eaton W.D., Dis Aquat Org 9, 193–198, 1990.

    Google Scholar 

  74. Nygaard R., Husgard S., Sommer A.I., Leong J.A., and Robertsen B., Fish Shellfish Immunol 10, 435–450, 2000.

    Google Scholar 

  75. Barry M. and McFadden G., Curr Opinion Immunol 10, 422–430, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Essbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essbauer, S., Bremont, M. & Ahne, W. Comparison of the eIF-2α Homologous Proteins of Seven Ranaviruses (Iridoviridae). Virus Genes 23, 347–359 (2001). https://doi.org/10.1023/A:1012533625571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012533625571

Navigation