Skip to main content
Log in

Are Smarter Brains Running Faster? Heritability of Alpha Peak Frequency, IQ, and Their Interrelation

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

It has often been proposed that faster central nervous system (CNS) processing amounts to a smarter brain. One way to index speed of CNS processing is through the assessment of brain oscillations via electroencephalogram (EEG) recordings. The dominant frequency (peak frequency) with which neuronal feedback loops in an adult human brain oscillate in a relaxed state is around 10 cycles/sec, but large individual differences exist in peak frequencies. Earlier studies have found high peak frequencies to be associated with higher intelligence. In the present study, data from 271 extended twin families (688 participants) were collected as part of a large, ongoing project on the genetics of adult brain function and cognition. IQ was assessed with the Dutch version of the Wechsler Adult Intelligence Scale (WAIS-IIIR), from which four dimensions were calculated (verbal comprehension, working memory, perceptual organization, and processing speed). Individual peak frequencies were picked according to the method described by Klimesch (1999) and averaged 9.9 Hz (SD 1.01). Structural equation modeling indicated that both peak frequency and the dimensions of IQ were highly heritable (range, 66% to 83%). A large part of the genetic variance in alpha peak frequency as well as in working memory and processing speed was due to nonadditive factors. There was no evidence of a genetic correlation between alpha peak frequency and any of the four WAIS dimensions: Smarter brains do not seem to run faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anokhin, A. P., and Vogel, F. (1996). EEG alpha rhythm frequency and intelligence in normal adults. Intelligence 23: 1–14.

    Google Scholar 

  • Anokhin, A. P., Lutzenberger, W., and Birbaumer, N. (1999). Spatiotemporal organization of brain dynamics and intelligence: an EEG study in adolescents. Int. J. Psychophysiol. 33(3): 259–273.

    Google Scholar 

  • Basar, E., Basar-Eroglu, C., Karakas, S., and Schurmann, M. (2000). Brain oscillations in perception and memory. Int. J. Psychophysiol. 35: 95–124.

    Google Scholar 

  • Bashi, J. (1977). Effects of inbreeding on cognitive performance. Nature 31: 266 (5601): 440–442.

    Google Scholar 

  • Berger, H. (1929). Ueber das Elektrenkephalogramm des Menschen. Archiv. für Psychiatrie Nervenkrankheit 87: 527–570.

    Google Scholar 

  • Boomsma, D. I. (1990). Twin registers in Europe: an Overview. Twin Res. 1(1): 34–51.

    Google Scholar 

  • Brillinger, D. (1975). Time series: Data analysis and theory. London: Holt, Rinehart and Winston.

    Google Scholar 

  • Burt, C., and Howard, M. (1956). The multifactorial theory of inheritance and its application to intelligence. Br. J. Statist. Psychol. 9: 95–131.

    Google Scholar 

  • Christian, J. C., Feinleib, M., and Norton, Jr., J. A. (1975). Statistical analysis of genetic variance in twins. Am. J. Hum. Genet. 27: 807.

    Google Scholar 

  • Christian, J. C., Morzorati, S., Norton, Jr., J. A., Williams, C. J., O'Connor, S., and Li, T. K. (1996). Genetic analysis of the resting electroencephalographic power spectrum in human twins. Psychophysiology 33: 584–591.

    Google Scholar 

  • Daneman, M., and Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonom. Bull. Rev. 3(4): 422–433.

    Google Scholar 

  • Deary, I. J. (2001). Human intelligence differences: A recent history. Trends Cogn. Sci. 5: 127–130.

    Google Scholar 

  • Eaves, L. J. (1972). Computer simulation of sample size and experimental design in human psychogenetics. Psychol Bull. 77: 144–152.

    Google Scholar 

  • Ellingson, R. J. (1966). Relationship between EEG and test intelligence: A commentary. Psych. Bull. 65: 91–98.

    Google Scholar 

  • Ellingson, R. J., and Lathrop, G. H. (1973). Intelligence and frequency of the alpha rhythm. Am. J. Ment. Defic. 78: 334–338.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., and Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. J. Exp. Psychol. Gen. 128: 309–331.

    Google Scholar 

  • Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.), Longan Group Ltd., Essex, UK.

    Google Scholar 

  • Fulker, D. W., and Eysenck, H. J. (1979). Nature and nurture: Heredity. In Eysenck, H. J. (ed.), The structure and measurement of intelligence. Berlin, Springer-Verlag, pp.

    Google Scholar 

  • Jasper, H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10: 370–375.

    Google Scholar 

  • Jausovec, N., and Jausovec, K. (2000). Differences in resting EEG related to ability. Brain Topogr. 12: 229–240.

    Google Scholar 

  • Jensen, A. R. (1994). Psychometric g related to differences in head size. Person. Indiv. Diff. 17: 597–606.

    Google Scholar 

  • Jinks, J. L., and Fulker, D. W. (1970). Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of human behavior. Psychol Bull. 73: 311–349.

    Google Scholar 

  • Klimesch, W. (1997). EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26: 319–340.

    Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Cog. Brain Res. Rev. 29(2–3): 169–195.

    Google Scholar 

  • Klimesch, W., Doppelmayr, M., Schimke, H., and Pachinger, T. (1996). Alpha frequency, reaction time, and the speed of processing information. J. Clin. Neurophysiol. 13: 511–518.

    Google Scholar 

  • Köpruner, V., Pfurtscheller, G., and Auer, L. M. (1984). Quantitative EEG in normals and in patients with cerebral ischemia. Prog. Brain Res. 62: 29–50.

    Google Scholar 

  • Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence 14: 389–433.

    Google Scholar 

  • Lebedev, A. N. (1990). Cyclical neural codes of human memory and some quantitative regularities in experimental psychology. In Psychophysical explorations of mental structures, Geissler, H. G. (ed.), Toronto, Hogrefe & Huber, pp. 303–310.

    Google Scholar 

  • Lebedev, A. N. (1994). The neurophysiological parameters of human memory. Neurosci. Behav. Physiol. 24: 254–259.

    Google Scholar 

  • Lehtovirta, M., Partanen, J., Kononen, M., Soininen, H., Helisalmi, S., Mannermaa, A., Ryynanen, M., Hartikainen, P., and Riekkinen, P. (1996). Spectral analysis of EEG in Alzheimer' disease: Relation to apolipoprotein E polymorphism. Neurobiol. Aging 17: 523–526.

    Google Scholar 

  • Lopes da Silva, F. H. (1991). Neural mechanisms underlying brain waves: From neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79: 81–93.

    Google Scholar 

  • Lopes da Silva, F. H., and Storm van Leeuwen, W. (1977). The cortical source of alpha rhythm. Neurosc. Lett. 6: 237–241.

    Google Scholar 

  • Luciano, M., Smith, G. A., Wright, M. J., Geffen, G. M., Geffen, L. B., and Martin, N. M. (in press). On the heritability of inspection time and its covariance with IQ: A twin study. Intelligence.

  • Lykken, D. T., Tellegen, A., and Iacono, W. G. (1982). EEG spectra in twins: Evidence for a neglected mechanism of genetic determination. Physiol. Psychol. 10: 60–65.

    Google Scholar 

  • Lykken, D. T., Tellegen, A., and Thorkelson, K. (1974). Genetic determination of EEG frequency spectra. Biol. Psychol. 1: 245–259.

    Google Scholar 

  • Martin, N. G., Eaves, L. J., Kearsay, M. J., and Davies, P. (1978). The power of the classical twin study. Heredity 40: 97–116.

    Google Scholar 

  • Martin, N. G., and Wilson, S. R. (1982). Bias in the estimation of heritability from truncated samples of twins. Beh. Gen. 12(4): 467–472.

    Google Scholar 

  • Neale, M. C. (1997). Mx: Statistical modeling. (3rd ed.), Box 980126 MCV, Richmond, VA 23298.

  • Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic studies of twins and families. (Vol. 67) NATO Asi Series. Series D, Behavioural and Social Sciences, Dordrecht, The Netherlands.

  • Necka, E. (1992). Cognitive analysis of intelligence: The significance of working memory processes. Person. Individ. Diff. 13(9): 1031–1046.

    Google Scholar 

  • Nunez, P. L., Reid, L., and Bickford, R. G. (1978). The relationship of head size to alpha frequency with implications to a brain wave model. Electroencephalogr. Clin. Neurophysiol. 44: 344–352.

    Google Scholar 

  • Osaka, M., Osaka, N., Koyama, S., Okusa, T., and Kakigi, R. (1999). Individual differences in working memory and the peak alpha frequency shift on magnetoencephalography. Brain Res. Cogn. Brain. Rev. 25: 365–368.

    Google Scholar 

  • Plomin, R., Chipuer, H. M., and Neiderhiser, J. M. (1994a). Behavioral genetic evidence for the importance of nonshared environment. In Hetherington, E. M., Reiss, D., et al. (eds.), Separate social worlds of siblings: The impact of nonshared environment on development. Hillsdale, NJ, Erlbaum, pp. 1–31.

    Google Scholar 

  • Plomin, R., Pedersen, N. L., Lichtenstein, P., and McClearn, G. E. (1994b). Variability and stability in cognitive abilities are largely genetic later in life. Behav. Gen. 24(3): 207–215.

    Google Scholar 

  • Plomin, R., DeFries, J. C., and McClearn, G. E. (1990). Behavioral Genetics: A primer. New York: Freeman. POLY, Physiological Analysis Package. (1999). Inspector Research Systems BV, Version 5.0. Amsterdam, The Netherlands.

    Google Scholar 

  • Posthuma, D., and Boomsma, D. I. (2000). A note on the statistical power in extended twin designs. Behav. Gen. 30: 147–158.

    Google Scholar 

  • Posthuma, D., Boomsma, D. I., and de Geus, E. J. C. (2001). Perceptual speed and IQ are associated through common genetic factors. Behav. Gen. 31: 593–602.

    Google Scholar 

  • Scher, M. S. (1997a). Neurophysiological assessment of brain function and maturation: II. A measure of brain dysmaturity in healthy preterm neonates. Pediatr. Neurol. 16: 287–295.

    Google Scholar 

  • Scher, M. S. (1997b). Neurophysiological assessment of brain function and maturation: I. A measure of brain adaptation in high risk infants. Pediatr. Neurol. 16: 191–198.

    Google Scholar 

  • Seemanova, E. (1971). A study of children of incestuous matings. Hum. Hered. 21: 108–128.

    Google Scholar 

  • Steriade, M., and Llinás, R. R. (1988). The functional states of the thalamus and the associated neural interplay. Physiol. Rev. 68: 649–742.

    Google Scholar 

  • Steriade, M., Gloor, P., Llinás, R. R., Lopes da Silva, F. H., and Mesulam, M. M. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol. 76: 481–508.

    Google Scholar 

  • van Beijsterveldt, C. E., and Boomsma, D. I. (1994). Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): A review. Hum. Genet. 94: 319–330.

    Google Scholar 

  • Vernon, P. A. (1987). Speed of information-processing and intelligence. Vernon, P. A. (ed.), Norwood, NJ: Ablex.

    Google Scholar 

  • Vogel, F. (2000). Genetics and the electroencephalogram. Berlin, Germany, Springer-Verlag, p. 117.

    Google Scholar 

  • Vogel, W., Broverman, D. M. (1964). Relationship between EEG and test intelligence: a critical review. Psychol Bull., 62: 132–144.

    Google Scholar 

  • WAIS-III Manual. (1997) (Dutch version). Lisse: Swets and Zeitlinger.

  • Wright, M. J., Boomsma, D. I., De Geus, E. J. C., Posthuma, D., Van Baal, G. C. M., Luciano, M., Hansell, N. K., Ando, J., Hasegawa, T., Hiraishi, K., Ono, Y., Miyake, A., Smith, G. A., Geffen, G. A., Geffen, L. B., and Martin, N. G. (2001). Genetics of cognition: Outline of collaborative twin study. Twin Res. 4: 48–56.

    Google Scholar 

  • Wyatt, W. J. (1993). Identical twins, emergenesis, and environments. Am. Psychol. 48: 1294–1295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posthuma, D., Neale, M.C., Boomsma, D.I. et al. Are Smarter Brains Running Faster? Heritability of Alpha Peak Frequency, IQ, and Their Interrelation. Behav Genet 31, 567–579 (2001). https://doi.org/10.1023/A:1013345411774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013345411774

Navigation