Skip to main content
Log in

The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Under what conditions might organisms be capable of rapid adaptive evolution? We reviewed published studies documenting contemporary adaptations in natural populations and looked for general patterns in the population ecological causes. We found that studies of contemporary adaptation fall into two general settings: (1) colonization of new environments that established newly adapted populations, and (2) local adaptations within the context of a heterogeneous environments and metapopulation structure. Local ecological processes associated with colonizations and introductions included exposure to: (1) a novel host or food resource; (2) a new biophysical environment; (3) a new predator community; and (4) a new coexisting competitor. The new environments that were colonized often had depauperate communities, sometimes because of anthropogenic disturbance. Local adaptation in heterogeneous environments was also often associated with recent anthropogenic changes, such as insecticide and herbicide resistance, or industrial melanism. A common feature of many examples is the combination of directional selection with at least a short-term opportunity for population growth. We suggest that such opportunities for population growth may be a key factor that promotes rapid evolution, since directional selection might otherwise be expected to cause population decline and create the potential for local extinction, which is an ever-present alternative to local adaptation. We also address the large discrepancy between the rate of evolution observed in contemporary studies and the apparent rate of evolution seen in the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Able, K.P. & J.R. Belthoff, 1998. Rapid evolution of migratory behavior in the introduced house finch of eastern North America. Proc. Royal Soc. London, Series B.

  • Antonovics, J., A.D. Bradshaw & R.G. Turner, 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1–85.

    Google Scholar 

  • Baker, A.J., 1980. Morphometric differentiation in New Zealand populations of the house sparrow. Evolution 34: 638–653.

    Google Scholar 

  • Barton, N. & L. Partridge, 2000. Limits to natural selection. BioEssays 22: 1075–1084.

    Google Scholar 

  • Bell, M.A., J.V. Baumgartner & E.C. Olson. 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11: 258–271.

    Google Scholar 

  • Berry, R.J., 1964. The evolution of an island population of the house mouse. Evolution 18: 468–483.

    Google Scholar 

  • Berthold, P., A.J. Helbig, G. Mohr & U. Querner, 1992. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360: 668–670.

    Google Scholar 

  • Bookstein, F.L., P.D. Gingerich & A.G. Kluge, 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology 4: 120–134.

    Google Scholar 

  • Bradshaw, A.D., 1984. The importance of evolutionary ideas in ecology - and vice versa, pp. 1–26 in Evolutionary Ecology, edited by B. Shorrocks. Blackwell, Oxford.

    Google Scholar 

  • Burger, R. & M. Lynch, 1995. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49: 151–163.

    Google Scholar 

  • Byrne, K. & R.A. Nichols, 1999. Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82: 7–15.

    Google Scholar 

  • Carroll, S.B. & C. Boyd, 1992. Host race radiation in the soapberry bug: natural history with the history. Evolution 46: 1052–1069.

    Google Scholar 

  • Carroll, S.P., H. Dingle & S.P. Klassen, 1997. Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug. Evolution 51: 1182–1188.

    Google Scholar 

  • Carroll, S.P., S.P. Klassen & H. Dingle, 1998. Rapidly evolving adaptations to host ecology and nutrition in the soapberry bug. Evol. Ecol. 12: 955–968.

    Google Scholar 

  • Charlesworth, B., 1984a. The cost of phenotypic evolution. Paleobiology 10: 319–327.

    Google Scholar 

  • Charlesworth, B., 1984b. Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10: 308–318.

    Google Scholar 

  • Conant, S., 1988. Geographic variation in the Laysan finch. Evol. Ecol. 2: 270–282.

    Google Scholar 

  • Cruz, A. & J.W. Wiley, 1989. The decline of an adaptation in the absence of a presumed selection pressure. Evolution 43: 55–62.

    Google Scholar 

  • Damgaard, C., 1996. The rate of evolution in growing populations. Trends Ecol. Evol. 11: 107–108.

    Google Scholar 

  • Darwin, C., 1859. The Origin of Species By Means of Natural Selection. John Murray, London.

    Google Scholar 

  • Diamond J., S.L. Pimm, M.E. Gilpin & M. LeCroy, 1989. Rapid evolution of character displacement in Myzomelid honeyeaters. Am. Natural. 134: 675–708.

    Google Scholar 

  • Egerton-Warburton, L.M. & B.J. Griffin, 1995. Differential responses of Pisolithus tinctorius isolates to aluminum in vitro. Canad. J. Bot. 73: 1229–1233.

    Google Scholar 

  • Egerton-Warburton, L.M., J. Juo, B.J. Griffin & B.B. Lamont, 1993. The effect of aluminum on the distribution of calcium, magnesium and phosphorus in mycorrhizal and non-mycorrhizal seedlings of Eucalyptus rudis: a croy-microanalytical study. Plant Soil 155/156: 481–484.

    Google Scholar 

  • Eisenberg, J.F., 1981. The Mammalian Radiations. University of Chicago Press, Chicago.

    Google Scholar 

  • Endler, J.A., 1980. Natural selection on color patterns in Poecilia reticulata. Evolution 34: 76–91.

    Google Scholar 

  • Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Endler, J.A., 1995. Multiple-trait coevolution and environmental gradients in guppies. TREE 10: 22–29.

    Google Scholar 

  • Fenchel, T., 1975. Character displacement and coexistence in mud snails. Oecologia 20: 19–32.

    Google Scholar 

  • Filchak, K.E., J.B. Roethele & J.L. Feder, 2000. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407: 739–742.

    Google Scholar 

  • Flessa, K.W., A. H. Cutler & K.H. Meldahl, 1993. Time-averaging and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19: 266–296.

    Google Scholar 

  • Fox, J.A., M.F. Dybdahl, J. Jokela & C.M. Lively, 1996. Genetic structure of coexisting sexual and clonal subpopulations in a freshwater snail (Potamopyrgus antipodarum). Evolution 50: 1541–1548.

    Google Scholar 

  • Gibbs, H.L. & P.R. Grant, 1987. Oscillating selection on Darwin' finches. Nature 327: 511–513.

    Google Scholar 

  • Gingerich, P.D., 1983. Rates of evolution: effects of time and temporal scaling. Science 222: 159–161.

    Google Scholar 

  • Gomulkiewicz, R. & R.D. Holt, 1995. When does evolution by natural selection prevent extinction? Evolution 49: 201–207.

    Google Scholar 

  • Gould, S.J., 1980. Is a new and general theory of evolution developing? Paleobiology 6: 199–130.

    Google Scholar 

  • Gould, S.J. & N. Eldredge, 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115–151.

    Google Scholar 

  • Gould, S.J. & N. Eldredge, 1993. Punctuated equilibrium comes of age. Nature 366: 223–227.

    Google Scholar 

  • Grant, P.R, 1993. Hybridization of Darwin' finches on Isla Daphne Major, Galapagos. Philos. Trans. Royal Soc. London, Series B 340: 127–139.

    Google Scholar 

  • Grant, P.R. & B.R. Grant, 1992. Hybridization of bird species. Science 256: 193–197.

    Google Scholar 

  • Grant, P.R. & B.R. Grant, 1995. Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241–251.

    Google Scholar 

  • Groman, J.D. & O. Pellmyr, 2000. Rapid evolution and specialization following host colonization in a yucca moth. J. Evol. Biol. 13: 223–236.

    Google Scholar 

  • Guillemaud, T., T. Lenormand, D. Gourguet, C. Chevillon, N. Pasteur & M. Raymond, 1998. Evolution of resistance in Culex pipiens: allele replacement and changing environment. Evolution 52: 443–453.

    Google Scholar 

  • Hairston, N.G., Jr. & W.E. Walton, 1986. Rapid evolution of a life history trait. Proc. Natl. Acad. Sci. U.S.A. 83: 4831–4833.

    Google Scholar 

  • Haldane, J.B.S., 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution 3: 51–56.

    Google Scholar 

  • Haldane, J.B.S., 1956. The theory of selection for melanism in Lepidoptera. Proc. Royal Soc. London, Series B 145: 303–306.

    Google Scholar 

  • Haldane, J.B.S., 1957. The cost of natural selection. J. Genet. 55: 511–524.

    Google Scholar 

  • Hanski, I., Nature (London) Nov. 5, and Abstract, 1998. Metapopulation dynamics. Nature 396: 41–49.

    Google Scholar 

  • Hatfield, T. & D. Schluter, 1999. Ecological speciation in sticklebacks: Environment-dependent hybrid fitness. Evolution 53: 866–873.

    Google Scholar 

  • Hendry, A.P., J.E. Hensleigh & R.R. Reisenbichler, 1998. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within LakeWashington. Canad. J. Fisher. Aquat. Sci. 55: 1387–1394.

    Google Scholar 

  • Hendry, A.P. & M.T. Kinnison, 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53: 1637–1653.

    Google Scholar 

  • Hill, J.K., C.D. Thomas & D.S. Blakeley, 1999. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121: 165–170.

    Google Scholar 

  • Holland, W.E., M.H. Smith, J.W. Gibbons & D.H. Brown, 1974. Thermal tolerances of fish from a reservoir receiving heated effluent from a nuclear reactor. Physiol. Zool. 47: 110–118.

    Google Scholar 

  • Huey, R.B., G.W. Gilchrist, M.L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309.

    Google Scholar 

  • James, A.C. & L. Partridge, 1995. Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. J. Evol. Biol. 8: 315–330.

    Google Scholar 

  • Jasieniuk, M. & B.D. Maxwell, 1994. Population genetics and the evolution of herbicide resistance in weeds. Phytoprotection 75 (suppl.): 25–35.

    Google Scholar 

  • Johnston, R.F. & R.K. Selander, 1964. House sparrows: rapid evolution of races in North America. Science 144: 548–550.

    Google Scholar 

  • Johnston, R.F. & R.K. Selander, 1971. Evolution in the house sparrow. II. Adaptive differentiation in North American populations. Evolution 25: 1–28.

    Google Scholar 

  • Kettlewell, B., 1973. The Evolution of Melanism: The Study of a Recurring Necessity. Clarendon Press, Oxford.

    Google Scholar 

  • Klerks, P.L. & J.S. Weis, 1987. Genetic adaptation to heavy metals in aquatic organisms: a review. Environ. Pollut. 45: 173–205.

    Google Scholar 

  • Klerks, P.L., 1989. Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal polluted site. Biol. Bull. 176: 135–141.

    Google Scholar 

  • Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.

    Google Scholar 

  • Lande, R., 1998. Anthropogenic, ecological and genetic factors in extinction and conservation. Res. Popul. Ecol. (Kyoto) 40: 259–269.

    Google Scholar 

  • Lande, R. & S. Shannon. 1996. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50: 434–437.

    Google Scholar 

  • Lee, C.E., 1999. Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53: 1423–1434.

    Google Scholar 

  • Lefebvre, C. & C. Vernet. 1991. Microevolutionary process on contaminated depositis, pp. 286–299 in Heavy Metal Tolerance in Plants: Evolutionary Aspects, edited by A.J. Shaw. CRC Press, Boca Raton, F.L.

    Google Scholar 

  • Losos, J.B. & D. Schluter, 2000. Analysis of an evolutionary species-area relationship. Nature 408: 847–850.

    Google Scholar 

  • Lynch, M., 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Natural. 136: 727–741.

    Google Scholar 

  • Lynch, M. & R. Lande, 1993. Evolution and extinction in response to environmental change, pp. 234–250 in Biotic Interactions and Global Climate Change, edited by J.G.K.P.M. Kareiva & R.B. Huey. Sinauer, Sunderland, Mass.

    Google Scholar 

  • MacArthur, R.H., and E.O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • MacNair, M.R., 1987. Heavy metal tolerance in plants: a model evolutionary system. Trends Ecol. Evol. 12.

  • Macnair, M.R., 1991a. The genetics of metal tolerance in natural populations, pp. 236–253 in Heavy Metal Tolerance in Plants: Evolutionary Aspects, edited by A.J. Shaw. CRC Press, Boca Raton, F.L.

    Google Scholar 

  • Macnair, M.R., 1991b. Why the evolution of resistance to antrhopogenic toxins normally involves major gene changes: the limits to natural selection. Genetica 84: 213–219.

    Google Scholar 

  • Magurran, A.E., B.H. Seghers, G.R. Carvalho & P.W. Shaw, 1992. Behavioral consequences of an artificial introduction of guppies (Poecilia reticulata) in Trinidad - evidence for the evolution of anti-predator behavior in the wild. Proc. Royal Soc. London, Series B 248: 117–122.

    Google Scholar 

  • Majerus, M.E.N., 1998. Melanism: Evolution in Action. Oxford University Press, Oxford.

    Google Scholar 

  • Mallet, J., 1989. The evolution of insecticide resistence: have the insects won? Trends Ecol. Evol. 4: 336–340.

    Google Scholar 

  • McLain, D.K., M.P. Moulton & J.G. Sanderson, 1999. Sexual selection and extinction: the fat of plumage-dimorphic and plumage monomorphic birds introduced onto islands. Evol. Ecol. Res. 1: 549–565.

    Google Scholar 

  • Orr, H.A., 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Orr, H.A., 2000. Adaptation and the cost of complexity. Evolution 54: 13–20.

    Google Scholar 

  • Powell, J.R., 1997. Progress and Prospects in Evolutionary Biology: The Drosophila Model. Oxford University Press, Oxford.

    Google Scholar 

  • Quinn, T.P. & D.J. Adams, 1996. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77: 1151–1162.

    Google Scholar 

  • Reznick, D.A., H. Bryga & J.A. Endler, 1990. Experimentally induced life-history evolution in a natural population. Nature 346: 357–359.

    Google Scholar 

  • Reznick, D.N., 1982. The impact of predation on life history evolution in Trinidadian guppies: the genetic components of observed life history differences. Evolution 36: 1236–1250.

    Google Scholar 

  • Reznick, D.N., 1989. Life history evolution in guppies. 2. Repeatability of field observations and the effects of season on life histories. Evolution 43: 1285–1297.

    Google Scholar 

  • Reznick, D.N. & H. Bryga, 1987. Life-history evolution in guppies. 1. Phenotypic and genotypic changes in an introduction experiment. Evolution 41: 1370–1385.

    Google Scholar 

  • Reznick, D.N. & H. Bryga, 1996. Life-history evolution in guppies (Poecilia reticulata: Poeciliidae). V. Genetic basis of parallelism in life histories. Am. Natural. 147: 339–359.

    Google Scholar 

  • Reznick, D.N. & J.A. Endler, 1982. The impact of predation on life history evolution in Trindadian guppies (Poecilia reticulata). Evolution 36: 160–177.

    Google Scholar 

  • Reznick, D.N., F.H. Rodd & M. Cardenas, 1996. Life-history evolution in guppies (Poecilia reticulata: Poeciliidae). IV. Parallelism in life-history phenotypes. Am. Natural. 147: 319–338.

    Google Scholar 

  • Reznick, D.N., F.H. Rodd & L. Nunney, 2001. Empirical evidence for rapid evolution, in Evolutionary Conservation Biology, edited by C.D., D.U. & F.R. Cambridge University Press.

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Google Scholar 

  • Rosenheim, J.A., M.W. Johnson, R.F.L. Mau, S.C. Welter & others, 1996. Biochemical preadaptations, founder events, and the evolution of resistance in arthropods. J. Econ. Entomol. 89: 263–273.

    Google Scholar 

  • Schluter, D., 1994. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266: 798–801.

    Google Scholar 

  • Schluter, D., 1995. Adaptive radiation in sticklebacks: trade-offs in feeding performance and growth. Ecology 76: 82–90.

    Google Scholar 

  • Schluter, D., 1996. Ecological causes of adaptive radiation. Am. Natural. 148: s40–s64.

    Google Scholar 

  • Schluter, D., 1998. Ecological causes of speciation, pp. 114–129 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.

    Google Scholar 

  • Seeley, R.H., 1986. Intense natural selection caused a rapid morphological transistion in a living marine snail. Proc. Natl. Acad. Sci. U.S.A. 83: 6897–6901.

    Google Scholar 

  • Simpson, G.G., 1944. Tempo and Mode in Evolution. Colombia University Press, New York.

    Google Scholar 

  • Sinervo, B. & C.M. Lively, 1996. The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380:240–243.

    Google Scholar 

  • Sinervo, B., E. Svensson, T. Comendant, 2000. Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406: 985–988.

    Google Scholar 

  • Singer, M.C., C.D. Thomas & C. Parmesan, 1993. Rapid humaninduced evolution of insect-host associations. Nature 366: 681–683.

    Google Scholar 

  • Smith, T.B., L.A. Freed, J.K. Lepson & J.H. Carothers, 1995. Evolutionary consequences of extinctions in populations of a Hawaiian honeycreeper. Conserv. Biol. 9: 107–113.

    Google Scholar 

  • Stearns, S.C., 1983a. The genetic basis of differences in life history traits among six populations of mosquitofish that shared ancestors in 1905. Evolution 37: 618–627.

    Google Scholar 

  • Stearns, S.C., 1983b. A natural experiment in life history evolution: field data on the introduction of mosquitofish to Hawaii. Evolution 37: 601–617.

    Google Scholar 

  • Taylor, G.E., L.F. Pitelka & M.T. Clegg, 1991. Ecological Genetics and Air Pollution. Springer Verlag, New York.

    Google Scholar 

  • Thompson, J. N., 1998. Rapid evolution as an ecological process. Trends Ecol. Evol. 13: 329–332.

    Google Scholar 

  • Till-Bottraud, I., L. Wu & J. Harding, 1990. Rapid evolution of life history traits in populations of Poa annua L. J. Evol. Biol. 3: 205–224.

    Google Scholar 

  • Vamosi, S.M., T Hatfield & D. Schluter, 2000. A test of ecological selection against young-of-the-year hybrids of sympatric sticklebacks. J. Fish Biol. 57: 109–121.

    Google Scholar 

  • Via, S., A.C. Bouck & S. Skillman, 2000. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 54: 1626–1637.

    Google Scholar 

  • Vila, C., P. Savolainen, J.E. Maldonado, I.R. Amorim, J.E. Rice, R.L. Honeycutt, K.A. Crandall, J. Lundeberg & R.K. Wayne, 1997. Multiple and ancient origins of the domestic dog. Science 267: 1687–1689.

    Google Scholar 

  • Weber, E. & B. Schmid, 1998. Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. Am. J. Bot. 85: 1110–1121.

    Google Scholar 

  • Williams, C.K. & R.J. Moore, 1989a. Genetic divergence in fecundity of Australian wild rabbits Oryctolagus cuniculus. J. Anim. Ecol. 58.

  • Williams, C.K. & R.J. Moore, 1989b. Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 58: 495–507.

    Google Scholar 

  • Wilson, E.O., 1965. The challenge from related species, pp. 7–24 in The Genetics of Colonizing Species, edited by H.G. Baker & G.L. Stebbins. Academic Press, New York, N.Y.

    Google Scholar 

  • Wu, L., 1991. Colonization and establishment of plants in contaminated sites, pp. 270–284 in Heavy Metal Tolerance in Plants: Evolutionary Aspects, edited by A.J. Shaw. CRC Press, Boca Raton, F.L.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznick, D.N., Ghalambor, C.K. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112, 183–198 (2001). https://doi.org/10.1023/A:1013352109042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013352109042

Navigation