Skip to main content
Log in

Genetic Covariance Among Measures of Information Processing Speed, Working Memory, and IQ

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The genetic relationship between lower (information processing speed), intermediate (working memory), and higher levels (complex cognitive processes as indexed by IQ) of mental ability was studied in a classical twin design comprising 166 monozygotic and 190 dizygotic twin pairs. Processing speed was measured by a choice reaction time (RT) task (2-, 4-, and 8-choice), working memory by a visual-spatial delayed response task, and IQ by the Multidimensional Aptitude Battery. Multivariate analysis, adjusted for test-retest reliability, showed the presence of a genetic factor influencing all variables and a genetic factor influencing 4- and 8-choice RTs, working memory, and IQ. There were also genetic factors specific to 8-choice RT, working memory, and IQ. The results confirmed a strong relationship between choice RT and IQ (phenotypic correlations: −0.31 to −0.53 in females, −0.32 to −0.56 in males; genotypic correlations: −0.45 to −0.70) and a weaker but significant association between working memory and IQ (phenotypic: 0.26 in females, 0.13 in males; genotypic: 0.34). A significant part of the genetic variance (43%) in IQ was not related to either choice RT or delayed response performance, and may represent higher order cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alarcon, M., Plomin, R., Fulker, D. W., Corley, R., and DeFries, J. C. (1998). Molarity not modularity: Multivariate genetic analysis of specific cognitive abilities in parents and their 16-yearold children in the Colorado Adoption Project. Cog. Dev. 14: 175–193.

    Google Scholar 

  • Ando, J., Ono, Y., and Wright M. J. (2001). Genetic structure of spatial and verbal working memory. Behav. Gen. 31: 615–624.

    Google Scholar 

  • Baddeley, A. (1992). Working Memory. Science 255: 556–559.

    Google Scholar 

  • Baker, L. A., Vernon, P. A., and Ho, H. (1991). The genetic correlation between intelligence and speed of information processing. Behav. Gen. 21: 351–367.

    Google Scholar 

  • Boomsma, D. I., and Somsen, R. J. M. (1991). Reaction times measured in a choice reaction time and a double task condition: A small twin study. Pers. Indiv. Differ. 12: 519–522.

    Google Scholar 

  • Cardon, L. R., and Fulker, D. W. (1994). A model of developmental change in hierarchical phenotypes with application to specific cognitive abilities. Behav. Gen. 24: 1–16.

    Google Scholar 

  • Cardon, L. R., Fulker, D. W., DeFries, J. C., and Plomin, R. (1992). Multivariate genetic analysis of specific cognitive abilities in the Colorado Adoption Project at age 7. Intelligence 16: 383–400.

    Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factoranalytic studies, Cambridge, Cambridge University Press.

    Google Scholar 

  • Deary, I. J., and Stough, C. (1996). Intelligence and inspection time. Am. Psychol. 51: 599–608.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., and Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. J. Exp. Psychol. Gen. 128: 309–331.

    Google Scholar 

  • Finkel, D., and McGue, M. (1993). The origins of individual differences in memory among the elderly: A behavior genetic analysis. Psychol. Aging 8: 527–537.

    Google Scholar 

  • Finkel, D., Pedersen, N., and McGue, M. (1995a). Genetic influences on memory performance in adulthood: Comparison of Minnesota and Swedish twin data. Psychol. Aging 10: 437–446.

    Google Scholar 

  • Finkel, D., Pedersen, N. L., McGue, M., and McClearn, G. E. (1995b). Heritability of cognitive abilities in adult twins: Comparison of Minnesota and Swedish data. Behav. Gen. 25: 421–431.

    Google Scholar 

  • Fry, A. F., and Hale, S. (1996). Processing speed, working memory, and fluid intelligence. Psychol. Sci. 7: 237–241.

    Google Scholar 

  • Fry, A. F., and Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biol. Psychol. 54: 1–34.

    Google Scholar 

  • Geffen, G. M., Wright, M. J., Green, H. J., Gillespie, N. A., Smyth, D. C., Evans, D. M., and Geffen, L. B. (1997). Effects of memory load and distraction on performance and event-related slow potentials in a visuospatial working memory task. J. Cogn. Neurosci. 9: 743–757.

    Google Scholar 

  • Goldman-Rakic, P. S. (1992). Working memory and the mind. Sci. Am. 267: 73–79.

    Google Scholar 

  • Harrell, T. H., Honaker, M., Hetu, M., and Oberwager, J. (1987). Computerized versus traditional administration of the Multidimensional Aptitude Battery-Verbal Scale: An examination of reliability and validity. Comp. Hum. Behav. 3: 129–137.

    Google Scholar 

  • Hick, W. E. (1952). On the rate of gain of information. Q. J. Exp. Psychol. 4: 11–26.

    Google Scholar 

  • Ho, H., Baker, L. A., and Decker, S. N. (1988). Covariation between intelligence and speed of cognitive processing: genetic and environmental influences. Behav. Gen. 18: 247–261.

    Google Scholar 

  • Hunt, E. (1985). The correlates of intelligence. Curr. Top. Hum. Intell. 1: 157–178.

    Google Scholar 

  • Jackson, D. N. (1998). Multidimensional Aptitude Battery II-Manual, Port Huron, MI, Sigma Assessment Systems, Inc.

    Google Scholar 

  • Jensen, A. R. (1980). Chronometric analysis of intelligence. J. Soc. Biol. Struct. 3: 103–122.

    Google Scholar 

  • Jensen, A. R. (1982). Reaction time and psychometric g. In H. J. Eysenck (ed.), A model for intelligence, Berlin, Springer-Verlag, pp. 93–132.

    Google Scholar 

  • Jensen, A. R. (1993). Why is reaction time correlated with psychometric g? Curr. Dir. Psychol. Sci. 2: 53–56.

    Google Scholar 

  • Jensen, A. R. (1998). The g Factor. Westport, CT, Praeger.

    Google Scholar 

  • Kail, R., and Salthouse, T. A. (1994). Processing speed as mental capacity. Acta Psychol. 86: 199–225.

    Google Scholar 

  • King, J., and Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. J. Mem. Lang. 30: 580–602.

    Google Scholar 

  • Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the Four-sources Model. J. Gen. Psychol. 120: 375–405.

    Google Scholar 

  • Kyllonen, P. C., and Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence 14: 389–433.

    Google Scholar 

  • Larson, G. E., and Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: Toward a process theory of g. Intelligence 13: 5–31.

    Google Scholar 

  • Longstreth, L. E. (1984). Jensen' reaction-time investigations of intelligence: A critique. Intelligence 8: 139–160.

    Google Scholar 

  • Luo, D., Petrill, S. A., and Thompson, L. A. (1994). An exploration of genetic g: Hierarchical factor analysis of cognitive data from the Western Reserve Twin Project. Intelligence 18: 335–347.

    Google Scholar 

  • MacLennan, R. N., Jackson, D. N., and Bellantino, N. (1988). Response latencies and the computerized assessment of intelligence. Pers. Indiv. Differ. 9: 811–816.

    Google Scholar 

  • McCartney, K., Harris, M. J., and Bernieri, F. (1990). Growing up and growing apart: A developmental meta-analysis of twin studies. Psychol. Bull. 107: 226–237.

    Google Scholar 

  • McClearn, G. E., Johansson, B., Berg, S., Pederson, N. L., Ahern, F., Petrill, S. A., and Plomin, R. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276: 1560–1563.

    Google Scholar 

  • Miller, L. T., and Vernon, P. A. (1992). The general factor in shortterm memory, intelligence, and reaction time. Intelligence 16: 5–29.

    Google Scholar 

  • Miller, L. T., and Vernon, P. A. (1996). Intelligence, reaction time, and working memory in 4-to 6-year-old children. Intelligence 22: 155–190.

    Google Scholar 

  • Neale, M. (2000). Statistical Modeling with Mx. Department of Psychiatry, Box 126 MCV, Richmond, VA 23298.

    Google Scholar 

  • Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, The Netherlands, Kluwer Academic Publishers.

    Google Scholar 

  • Neubauer, A. C., Riemann, R., Mayer, R., and Angleitner, A. (1997). Intelligence and reaction time in the Hick, Sternberg, and Posner paradigms. Pers. Indiv. Differ. 22: 885–894.

    Google Scholar 

  • Petrill, S. A., Luo, D., Thompson, L. A., and Detterman, D. K. (1996). The independent prediction of general intelligence by elementary cognitive tasks: Genetic and environmental influences. Behav. Gen. 26: 135–147.

    Google Scholar 

  • Petrill, S. A., Plomin, R., Berg, S., Johansson, B., Pedersen, N. L., Ahem, F., and McClearn, G. E. (1998). The genetic and environmental relationship between general and specific cognitive abilities in twins age 80 and older. Psychol. Sci. 9: 183–189.

    Google Scholar 

  • Rijsdijk, F. V., Vernon, P. A., and Boomsma, D. I. (1998). The genetic basis of the relation between speed-of-informationprocessing and IQ. Behav. Brain Res. 95: 77–84.

    Google Scholar 

  • Small, M. A., Raney, J. F., and Knapp, T. J. (1987). Comparison of two reaction-time tasks and their relation to intelligence. Percept. Motor Skill 65: 867–870.

    Google Scholar 

  • Smith, G. A., and Stanley, G. (1983). Clocking g: Relating intelligence and measures of timed performance. Intelligence 7: 353–368.

    Google Scholar 

  • Spearman, C. (1904). ‘General Intelligence’ objectively determined and measured. Am. J. Psychol. 15: 201–293.

    Google Scholar 

  • Thapar, A., Petrill, S. A., and Thompson, L. A. (1994). The heritability of memory in the Western Reserve twin project. Behav. Gen. 24: 155–160.

    Google Scholar 

  • Thompson, L. A., Detterman, D. K., and Plomin, R. (1991). Associations between cognitive abilities and scholastic achievement: Genetic overlap but environmental differences. Psychol. Sci. 2: 158–165.

    Google Scholar 

  • Vernon, P. A. (1987). New developments in reaction time research. In P. A. Vernon (ed.), Speed of information processing and intelligence, New Jersey, Ablex Publishing Corporation, pp. 1–20.

    Google Scholar 

  • Vernon, P. A., and Kantor, L. (1986). Reaction time correlations with intelligence test scores obtained under either timed or untimed conditions. Intelligence 10: 315–330.

    Google Scholar 

  • Welford, A. T. (1971). What is the basis of choice reaction-time. Ergonomics 14: 679–693.

    Google Scholar 

  • Wilson, R. S. (1986). Continuity and change in cognitive ability profile. Behav. Gen. 16: 45–60.

    Google Scholar 

  • Wright, M. J., Smith, G. A., Geffen, G. M., Geffen, L. B., and Martin, N. G. (2000). Genetic influence on the variance in coincidence timing and its covariance with IQ: A twin study. Intelligence 28: 239–250.

    Google Scholar 

  • Wright, M. J., Boomsma, D., de Geus, E., Posthuma, D., van Baal, C., Luciano, M., Hansell, N. K., Ando, J., Hasegawa, T., Hiraishi, K., Ono, Y., Miyake, A., Smith, G. A., Geffen, G. A., Geffen, L. B., and Martin, N. G. (2001). Genetics of cognition: Outline of collaborative twin study. Twin Res. 4: 48–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luciano, M., Wright, M.J., Smith, G.A. et al. Genetic Covariance Among Measures of Information Processing Speed, Working Memory, and IQ. Behav Genet 31, 581–592 (2001). https://doi.org/10.1023/A:1013397428612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013397428612

Navigation