Skip to main content
Log in

Computational gene finding in plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Automated methods for identifying protein coding regions in genomic DNA have progressed significantly in recent years, but there is still a strong need for more accurate computational solutions to the gene finding problem. Large-scale genome sequencing projects depend greatly on gene finding to generate accurate and complete gene annotation. Improvements in gene finding software are being driven by the development of better computational algorithms, a better understanding of the cell's mechanisms for transcription and translation, and the enormous increases in genomic sequence data. This paper reviews some of the most widely used algorithms for gene finding in plants, including technical descriptions of how they work and recent measurements of their success on the genomes of Arabidopsis thaliana and rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., George, R.A., Lewis, S.E., Richards, S., Ashburner, M., Henderson, S.N., Sutton, G.G., Wortman, J.R., Yandell, M.D., Zhang, Q., Chen, L.X., Brandon, R.C., Rogers, Y.H., Blazej, R.G., Champe, M., Pfeiffer, B.D., Wan, K.H., Doyle, C., Baxter, E.G., Helt, G., Nelson, C.R., Gabor, G.L., Abril, J.F., Agbayani, A., An, H.J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R.M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E.M., Beeson, K.Y., Benos, P.V., Berman, B.P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M.R., Bouck, J., et al. 2000. The genome sequence of Drosophila melanogaster. Science 287(5461): 2185–2195.

    Google Scholar 

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814): 796–815.

    Google Scholar 

  • Brunak, S., Engelbrecht, J. and Knudsen, S. 1991. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 220: 49–65.

    Google Scholar 

  • Burge, C. and Karlin, S. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268: 78–94.

    Google Scholar 

  • Claverie, J.M. 1997. Computational methods for the identification of genes in vertebrate genomic sequences. Human Mol. Genet. 6: 1735–1744.

    Google Scholar 

  • Duret L., Mouchiroud D. and Gautier C. 1995. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GCrich isochores. J. Mol. Evol. 40: 308–317.

    Google Scholar 

  • Ermolaeva, M.D., Khalak, H.G., White, O., Smith, H.O. and Salzberg, S.L. 2000. Prediction of transcription terminators in bacterial genomes. J. Mol. Biol. 301: 27–33.

    Google Scholar 

  • Farber, R., Lapedes, A. and Sirotkin, K. 1992. Determination of eukaryotic protein coding regions using neural networks and information theory. J. Mol. Biol. 226: 471–479.

    Google Scholar 

  • Fickett, J.W. 1996. The gene identification problem: an overview for developers. Comp. Chem. 20(1): 103–118.

    Google Scholar 

  • Franco, G.R., Adams, M.D., Soares, M.B., Simpson, A.J., Venter, J.C. and Pena, S.D. 1995. Identification of new Schistosoma mansoni genes by the EST strategy using a directional cDNA library. Gene 152: 141–147.

    Google Scholar 

  • Gelfand, M.S. 1995. Prediction of function in DNA sequence analysis. J. Comput. Biol. 2: 87–115.

    Google Scholar 

  • Guigo, R. 1997. Computational gene identification: an open problem. Comp. Chem. 21: 215–222.

    Google Scholar 

  • Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouze, P. and Brunak, S. 1996. Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucl. Acids Res. 24: 3439–3452.

    Google Scholar 

  • Jelinek, F. 1998. Statistical Methods for Speech Recognition. MIT Press.

  • Krogh, A. 1998. An introduction to hidden Markov models for biological sequences. In: S.L. Salzberg, D.B. Searls and S. Kasif (Eds.) Computational Methods in Molecular Biology, Elsevier, Amsterdam, Chap. 4, pp. 45–65.

    Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S., Shea, T.P., Benito, M.-I., Town, C.D., Fujii, C.Y., Mason, T., Bowman, C.L., Barnstead, M., Feldblyum, T., Buell, C.R., Ketchum, K.A., Ronning, C.M., Koo, H., Moffat, K., Cronin, L., Shen, M., Pai, G., van Aken, S., Umayam, L., Tallon, L., Gill, J., Adams, M.D., Carrera, A.J., Creasy, T.H., Goodman, H.M., Somerville, C.R., Copenhaver, G., Preuss, D., Nierman, W.C., White, O., Eisen, J.A., Salzberg, S., Fraser, C. and Venter, J.C. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.

    Google Scholar 

  • Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25: 955–964.

    Google Scholar 

  • Lowe, T.M. and Eddy, S.R. 1999. A computational screen for methylation guide snoRNAs in yeast. Science 283(5405): 1168–1171.

    Google Scholar 

  • Lukashin, A.V. and Borodovsky, M. 1998. GeneMark.hmm: new solutions for gene finding. Nucl. Acids Res. 26: 1107–1115.

    Google Scholar 

  • Matis, S., Xu, Y., Shah, M., Guan, X., Einstein, J.R., Mural, R. and Uberbacher, E. 1996. Detection of RNA polymerase II promoters and polyadenylation sites in human DNA sequence. Comp. Chem. 20(1): 135–140.

    Google Scholar 

  • O'Neill, M.C. 1991. Training back-propagation neural networks to define and detect DNA-binding sites. Nucl. Acids Res. 19: 313–318.

    Google Scholar 

  • O'Neill, M.C. 1992. Escherichia coli promoters: neural networks develop distinct descriptions in learning to search for promoters of different spacing classes. Nucl. Acids Res. 20: 3471–3477.

    Google Scholar 

  • Pavy, N., Rombauts, S., Dehais, P., Mathe, C., Ramana, D.V., Leroy, P. and Rouze, P. 1999. Evaluation of gene prediction software using a genomic data set: application to Arabidopsis thaliana sequences. Bioinformatics 15: 887–899.

    Google Scholar 

  • Quackenbush, J., Cho, J., Lee, D., Liang, F., Holt, I., Karamycheva, S., Parvizi, B., Pertea, G., Sultana, R. and White, J. 2001. The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucl. Acids Res. 29: 159–164.

    Google Scholar 

  • Salzberg, S. 1995. Locating protein coding regions in human DNA using a decision tree algorithm. J. Comput. Biol. 2: 473–485.

    Google Scholar 

  • Salzberg, S.L. 1997. A method for identifying splice sites and translational start sites in eukaryotic mRNA. Comput. Appl. Biosci. 13: 365–376.

    Google Scholar 

  • Salzberg, S.L., Searls, D. and Kasif, S. (Eds.). 1998a. Computational Methods in Molecular Biology. Elsevier Science, Amsterdam.

    Google Scholar 

  • Salzberg, S.L., Delcher, A.L., Kasif, S. and White, O. 1998b. Microbial gene identification using interpolated Markov models. Nucl. Acids Res. 26: 544–548.

    Google Scholar 

  • Salzberg, S., Delcher, A.L., Fasman, K.H. and Henderson, J. 1998c. A decision tree system for finding genes in DNA. J. Comput. Biol. 5: 667–680.

    Google Scholar 

  • Salzberg, S.L., Pertea, M., Delcher, A.L., Gardner, M.J. and Tettelin, H. 1999. Interpolated Markov models for eukaryotic gene finding. Genomics 59: 24–31.

    Google Scholar 

  • Solovyev, V.V., Salamov, A.A. and Lawrence, C.B. 1994. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucl. Acids Res. 22: 5156–5163.

    Google Scholar 

  • Solovyev, V.V., Salamov, A.A. and Lawrence, C.B. 1995. Identification of human gene structure using linear discriminant functions and dynamic programming. In: Proceedings of the International Conference on Intelligent Systems in Molecular Biology 3: 367–375.

    Google Scholar 

  • Stormo, G.D. 1990. Consensus patterns in DNA. Meth. Enzymol. 183: 211–221.

    Google Scholar 

  • Stormo, G.D. 2000. Gene-finding approaches for eukaryotes. Genome Res. 10: 394–397.

    Google Scholar 

  • Tompa, M. 1999. An exact method for finding short motifs in sequences, with application to the ribosome binding site problem. In: Proceedings of the International Conference on Intelligent Systems in Molecular Biology, pp. 262-271.

  • Yuan, Q., Quackenbush, J., Sultana, R., Pertea, M., Salzberg, S. and Buell, C.R. 2001. Rice bioinformatics. Analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol. 125: 1166–1174.

    Google Scholar 

  • Zhang, M.Q. and Marr, T.G. 1993. A weight array method for splicing signal analysis. Comput. Appl. Biosci. 9: 499–509.

    Google Scholar 

  • Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T. and Muller, K.R. 2000. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16: 799–807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertea, M., Salzberg, S.L. Computational gene finding in plants. Plant Mol Biol 48, 39–48 (2002). https://doi.org/10.1023/A:1013770123580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013770123580

Navigation