Skip to main content
Log in

Variability of genetic sex determination in poeciliid fishes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja, M.R. & F. Anders,1976.A genetic concept of the origin of cancer, based in part upon studies of neoplasms in fishes.Prg. Exp. Tumor Res.20: 380–397.

    Google Scholar 

  • Anders, A. & F. Anders, 1963. Genetisch bedingte XX-und XYWeibchen und YY-Männchen beim wilden Platypoecilus maculatus aus Mexiko.Z. Vererbungsl.94:1–18.

    Google Scholar 

  • Anders, A., F. Anders, W. Förster, K. Klinke & S. Rase, 1969. XX-, XY-, YY-Weibchen und XX-, XY-, YY-Männchen bei Platypoecilus maculatus (Poeciliidae).Zool. Anz. Suppl. BD 33: 333–339.

    Google Scholar 

  • Anders, A., F. Anders & K. Klinke, 1973. Regulation of gene expression in the Gordon-Kosswig melanoma system, pp. 33–63 in Genetics and Mutagenesis of Fish, edited by J.H. Schroeder. Springer Verlag, New York.

    Google Scholar 

  • Anders, A., H. Petry, C. Fleming, K. Petry, P. Brix, W. Lüke, H. Gröger, E. Schneider, J. Kiefer & F. Anders, 1994. Increasing melanoma incidence: putatively explainable by retrotransposons. Experimental contributions of the xiphophorine Gordon-Kosswig melanoma system.Pigment Cell. Res.7:433–450.

    Google Scholar 

  • Anders, F., 1991.Contributions of the Gordon-Kosswig melanoma system to the present concept of neoplasia.Pigment Cell. Res.4: 7–29.

    Google Scholar 

  • Anders, F., 1992. A gene alone may not make a tumor.J. Aids Res. Hum. Retrovirus.8: 833–853.

    Google Scholar 

  • Angus, R.A., 1989. Inheritance of melanistic pigmentation in the eastern mosquitofish.J. Hered. 80:387–392.

    Google Scholar 

  • Baroiller, J.F., Y. Guigen & A. Forstier, 1999.Endocrine and environmental aspects of sex differentiation in fish.Cell. Mol. Life Sci.55: 910–931.

    Google Scholar 

  • Bellamy, A.W. & M.L. Queal, 1951. Heterosomal inheritance and sex determination in Platypoecilus maculatus.Genetics 36:93–107.

    Google Scholar 

  • Black, D.A. & W.M. Howell, 1979. The North American mosquitofish, Gambusia affinis: a unique case in sex chromosome evolution.Copeia 3:509–513.

    Google Scholar 

  • Borowski, R.L., 1984. The evolutionary genetics of Xiphophorus, pp. 235–310 in Evolutionary Genetics of Fishes, edited by B.J. Turner.Plenum Press, New York, NY, USA.

    Google Scholar 

  • Carrasco, L.A.P., D.J. Penman & N. Bromage, 1999.Evidence for the presence of sex chromosomes in the Nile tilapia (Oreochromis niloticus) from synaptonemal complex analysis of XX, XY and YY genotypes.Aquaculture 173:207–218.

    Google Scholar 

  • Devlin, R.H., G.W. Stone & D.E. Smailus,1998. Extensive directtandem organization of a long repeat DNA sequence on the Y chromosome of Chinook salmon (Oncorhynchus tshawytscha). J. Mol. Evol.46: 277–287.

    Google Scholar 

  • Dzwillo, M., 1962. Ñber künstliche Erzeugung funktioneller Männchen weiblichen Genotyps bei Lebistes reticulatus.Biol. Zentralbl. 81:575–584.

    Google Scholar 

  • Dzwillo, M., 1966. Ñber den Einfluss von Methyltesteron auf primäre und sekundäre Geschlechtsmerkmale während verschiedener Phasen der Embryonalentwicklung von Lebistes reticulatus.Verb. Dtsch. Zool. Ges. Jena 29:471–476.

    Google Scholar 

  • Froschauer, A., C. Körting, W. Bernhardt, I. Nanda, M. Schmid, M. Schartl & J.-N. Volff,2001. Genomic plasticity and melanoma formation in the fish Xiphophorus.Mar. Biotechnol.3: S72–S80.

    Google Scholar 

  • Gordon, M., 1927. The genetics of viviparous top-minnow Platypoecilus: the inheritance of two kinds of melanophores.Genetics 12:253–283.

    Google Scholar 

  • Gordon, M., 1931. Hereditary basis of melanosis in hybrid fishes. Am. J. Cancer15:1495–1523.

    Google Scholar 

  • Gutbrod, H. & M. Schartl, 1999. Intragenic sex-chromosomal crossovers of Xmrk oncogene alleles affect pigment pattern formation and the severity of melanoma in Xiphophorus.Genetics 151: 773–783.

    Google Scholar 

  • Haaf, T. & M. Schmid, 1984. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes).Chromosoma89:37–41.

    Google Scholar 

  • Haskins, C.P., E.F. Haskins, J.J.A. McLaughlin & R.E. Hewitt, 1961. Polymorphism and population structure in Lebistes reticulatus, an ecological study, pp. 320–395 in Vertebrate Speciation, edited by W.F. Blair. University Texas Press, Austin, TX, USA.

    Google Scholar 

  • Kallman, K.D., 1971. Inheritance of melanophore patterns and sex determination in the Montezuma swordtail, Xiphophorus montezumae cortezi Rosen.Zoologica 56:77–94.

    Google Scholar 

  • Kallman, K.D., 1975.The platyfish Xiphophorus maculatus, pp. 81–132 in Handbook of Genetics. Vol. 4, edited by R.C. King. Plenum Press, New York, USA.

    Google Scholar 

  • Kallman, K.D., 1984. A new look at sex determination in poeciliid fishes, pp. 95–171 in Evolutionary Genetics of Fishes, edited by B.J. Turner. Plenum Publishing, New York.

    Google Scholar 

  • Kallman, K.D., 1989. Genetic control of size at maturity in Xiphophorus, pp.163–184 in Ecology and Evolution in Livebearing Fishes (Poeciliidae), edited by G.K. Meffee & F.F. Snelson. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kallman, K.D. & M.P. Schreibman,1973.A sex-linked gene controlling gonadotrope differentiation and its significance in determining the age of sexual maturation and the size of the platyfish, Xiphophorus maculatus.Gen. Comp. Endocrinol.21: 287–304.

    Google Scholar 

  • Kallman, K.D. & I.Y. Bao, 1987. Female heterogamety in the swordtail, Xiphophorus alvarezi Rosen (Pisces, Poeciliidae), with comments on a natural polymorphism affecting sword coloration.J. Exp. Zool. 243: 93–102.

    Google Scholar 

  • Kosswig, C., 1928. Ñber Kreuzungen zwischen den Teleostiern Xiphophorus hellerii und Platypoecilus maculatus.Z. Indukt. Abstammungs. Vererbungsl.47:150–158.

    Google Scholar 

  • Kosswig, C., 1929. Das Gen fremder Erbmasse.Züchter1:152–157.

    Google Scholar 

  • Meyer, A., J.M. Morrissey & M. Schartl, 1994.Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny.Nature 368: 539–542.

    Google Scholar 

  • Morizot, D.C.,S.A. Slaugenhaupt, K.D. Kallman & A. Chakravarti, 1991. Genetic linkage map of fishes of the genus Xiphophorus (Teleostei: Poeciliidae).Genetics127:399–410.

    Google Scholar 

  • Morizot, D.C., J. Harles, R.S. Nairn, K.D. Kallman & R.B. Walter, 1993.Linkage maps of non-salmonid fishes, pp. 4318–4325 in Genetic Map: Nonhuman Vertebrates, Vol. IV, edited by S.J. O'Brien.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.,6th edn.

    Google Scholar 

  • Nairn, R.S., D.C. Morizot, S. Kazianis, A.D. Woodhead & R.B. Setlow, 1996. Nonmammalian models for sunlight carcinogenesis: genetic analysis of melanoma formation in Xiphophorus hybrid fish.Photochem. Photobiol.64: 440–448.

    Google Scholar 

  • Nanda, I., W. Feichtinger, M. Schmid, J.H. Schröder, H. Zischler & J.T. Epplen, 1990. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish.J. Mol. Evol.30: 456–462.

    Google Scholar 

  • Nanda, I., J-N. Volff, S. Weis, C. Körting, A. Froschauer, M. Schmid & M. Schartl,2000.Amplification of a long terminal repeatlike element on the Y chromosome of the platyfish, Xiphophorus maculatus.Chromosoma 109:173–180.

    Google Scholar 

  • Nayudu, P.L., 1979.Genetic studies of melanic color patterns, and atypical sex determination in the guppy, Poecilia reticulata. Copeia2:225–231.

    Google Scholar 

  • Oliveira, C., J.S. Chew, F. Porto-Foresti, M.J. Dobson & J.M. Wright,1999. A LINE2 repetitive DNA sequence from the cichlid fish, Oreochromis niloticus: sequence analysis and chromosomal distribution.Chromosoma 108: 457–468.

    Google Scholar 

  • Peters, G., 1964. Vergleichende Untersuchungen an drei Subspecies von Xiphophorus hellerii Heckel (Pisces).Z. Zool. Syst. Evolutionforsch.2: 185–271.

    Google Scholar 

  • Poulter, R. & M. Butler, 1998.A retrotransposon family from the pufferfish (fugu) Fugu rubripes.Gene215:241–249.

    Google Scholar 

  • Poulter, R., M. Butler & J. Ormandy,1999.A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons.Gene227:169–179.

    Google Scholar 

  • Pryde, F.E., H.C. Gorham & E.J. Louis, 1997. Chromosome ends: all the same under their caps.Curr. Opin. Genet. Dev.7:822–828.

    Google Scholar 

  • Regan, J.D., 1961. Melanism in the poeciliid fish, Gambusia affinis (Baird and Girard).Am. Midl. Nat.65:139–143.

    Google Scholar 

  • Roushdy, J.,J. Michel, H. Petry, A. Anders & F. Anders, 1999. Paragenetic suppressors of suppressor genes - a new class of oncodeterminants.J. Cancer Res. Clin. Oncol.125:123–133.

    Google Scholar 

  • Schartl, M.,1990. Homology of melanoma-inducing loci in the genus Xiphophorus.Genetics 126:1083–1091.

  • Schartl, M., 1995.Platyfish and swordtails: a genetic system for the analysis of molecular mechanisms in tumor formation.Trends Genet.11:185–189.

    Google Scholar 

  • Schartl, M. & C. Wellbrock, 1998.Polygenetic inheritance of melanoma in Xiphophorus, pp.167–187 in Human Polygenic Diseases: Animals Models, edited by T.A. Dragani. Harwood Academic Publishers, Chur, Switzerland.

    Google Scholar 

  • Schartl, M., U. Hornung, H. Gutbrod, J.-N. Volff & J. Wittbrodt, 1999. Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element.Genetics 153:1385–1394.

    Google Scholar 

  • Schreibman, M.P., M. Schartl, K.D. Kallman & L. Magluilo-Cepriano, 1994. Molecular approaches to study the genetic regulation of the fish reproductive system, pp. 343–351 in Perspectives in Comparative Endocrinology, edited by K.G. Davey, R.E. Peter & S.S. Tobe.Natl. Res. Council of Canada, Ottawa.

    Google Scholar 

  • Schröder, J.H., 1964. Genetische Untersuchungen an domestizierten Stämmen der Gattung Mollienesia (Poeciliidae).Zool. Beiträge 10:369–463.

    Google Scholar 

  • Schröder, J.H., 1983.The guppy (Poecilia reticulata Peters) as a model for evolutionary studies in genetics, behavior and ecology. Ber. Naturwiss.-Med. Ver. Innsbruck70:249–279.

    Google Scholar 

  • Sohn, J.J., 1991. Does Xmrk an interesting spot?Genetics128: 655–656.

    Google Scholar 

  • Steinemann, M. & S. Steinemann,1997. The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the neo-Y chromosome of Drosophila miranda. Genetics 145:261–266.

    Google Scholar 

  • Vaiman, D. & E. Pailhoux,2000.Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade.Trends Genet.16:488–494.

    Google Scholar 

  • Volff, J.-N. & J. Altenbuchner,2000.A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution.FEMS Microbiol. Lett.186:143–150.

    Google Scholar 

  • Volff, J.-N., C. Körting, K. Sweeney & M. Schartl, 1999.The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts.Mol. Biol. Evol.16:1427–1438.

    Google Scholar 

  • Volff, J.-N., C. Körting & M. Schartl,2000.Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes.Mol. Biol. Evol.17:1673–1684.

    Google Scholar 

  • Volff, J.-N., A. Froschauer, C. Körting, W. Bernhardt, I. Nanda, C. Schultheis, M. Schmid & M. Schartl, 2001a.Genome fluidity in the fish Xiphophorus. in Aquatic Genomics.Springer Verlag, Tokyo (in press).

    Google Scholar 

  • Volff, J.-N., C. Körting, J. Altschmied, J. Duschl, K. Sweeney, K. Wichert, A. Froschauer & M. Schartl,2001b. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag lineage.Mol. Biol. Evol.18: 101–111.

    Google Scholar 

  • Volff, J.-N., C. Körting, A. Froschauer, K. Sweeney & M. Schartl, 2001c. Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates.J. Mol. Evol.52: 351–360.

    Google Scholar 

  • Volff, J.-N., C. Körting, A. Meyer & M. Schartl,2001d.Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol. Biol. Evol. 18: 427–431.

    Google Scholar 

  • Volff, J.-N., C. Körting & M. Schartl, 2001e.Ty3/Gypsy retrotransposon fossils in mammalian genomes: did they evolve into new cellular functions? Mol. Biol. Evol.18:266–270.

    Google Scholar 

  • Volff, J.-N., U. Hornung & M. Schartl,2001f. Fish retroposons related to Penelope of Drosophila virilis define a new group of retrotransposable elements.Mol. Gen. Genomics265:711–720.

    Google Scholar 

  • Weis, S. & M. Schartl,1998. The macromelanophore locus and the melanoma oncogene Xmrk are separate genetic entities in the genome of Xiphophorus.Genetics149:1909–1920.

    Google Scholar 

  • Winge, O., 1922.One-sided masculine and sex-linked inheritance in Lebistes reticulatus. C. R. Trav. Lab. Carlsberg14:1–19.

    Google Scholar 

  • Winge, O., 1927. The location of eighteen genes in Lebistes reticulatus.J. Genet. 18:1–43.

    Google Scholar 

  • Winge, O., 1930. On the occurrence of XX males in Lebistes with some remarks on Aida' so-called ‘non-disjunctional males’ in Aplocheilus.J. Genet.23:69–76.

    Google Scholar 

  • Winge, O. & E. Ditlevsen,1938. A lethal gene in the Y-chromosome of Lebistes.C. R. Trav. Lab. Carlsberg22:203–210.

    Google Scholar 

  • Wittbrodt, J., D. Adam, B. Malitschek, W. Mäueler, F. Raulf, A. Telling, S.M. Robertson & M. Schartl, 1989. Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus.Nature 341:415–421.

    Google Scholar 

  • Woolcock, B.W., B.M. Schmidt, K.D. Kallman & J.R. Vielkind, 1994. Differences in transcription of Xmrk-1 and Xmrk-2 genes suggest a role for Xmrk-2 in pigment pattern development in the platyfish, Xiphophorus maculatus.Cell. Growth Differ.5:575–583.

    Google Scholar 

  • Zander, C.D., 1965.Die Geschlechtsbestimmung bei Xiphophorus montezumae cortezi Rosen (Pisces).Z. Vererbungsl.96: 128–141.

    Google Scholar 

  • Zechel, C., U. Schleenbecker, A. Anders & F. Anders, 1988. verbB-related sequences in Xiphophorus that map to melanoma determining Mendelian loci and overexpress in a melanoma cell line.Oncogene1:605–617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volff, JN., Schartl, M. Variability of genetic sex determination in poeciliid fishes. Genetica 111, 101–110 (2001). https://doi.org/10.1023/A:1013795415808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013795415808

Navigation