Skip to main content
Log in

Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Drought, low temperature and salinity are the most important abiotic stress factors limiting crop productivity. A genomic map of major loci and QTLs affecting stress tolerance in Triticeae identified the crucial role of the group 5 chromosomes, where the highest concentration of QTLs and major loci controlling plant's adaptation to the environment (heading date, frost and salt tolerance) has been found. In addition, a conserved region with a major role in drought tolerance has been localized to the group 7 chromosomes. Extensive molecular biological studies have led to the cloning of many stress-related genes and responsive elements. The expression of some stress-related genes was shown to be linked to stress-tolerant QTLs, suggesting that these genes may represent the molecular basis of stress tolerance. The development of suitable genetic tools will allow the role of stress-related sequences and their relationship with stress-tolerant loci to be established in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acidregulated gene expression. Plant Cell 9: 1859-1868.

    Google Scholar 

  • Anderberg, J.R. and Walker-Simmons, M.K. 1992. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc. Natl. Acad. Sci. USA 89: 10183-10187.

    Google Scholar 

  • Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. 1994. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713.

    Google Scholar 

  • Baldi, P., Grossi, M., Pecchioni, N., Valé, G. and Cattivelli, L. 1999. High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals. Plant Mol. Biol. 41: 233-243.

    Google Scholar 

  • Bartels, D., Engelhardt, K., Roncarati, R., Schneider, K., Rotter A.M. and Salamini, F. 1991. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 10: 1037-1043.

    Google Scholar 

  • Baulcombe, D.C. 1999. Fast forward genetics based on virusinduced gene silencing. Curr. Opin. Plant Biol. 2: 109-113.

    Google Scholar 

  • Berberich, T., Uebeler, M. and Feierabend, J. 2000. cDNA cloning of cytoplasmic ribosomal protein S7 of winter rye (Secale cereale) and its expression in low-temperature-treated leaves. Biochim. Biophys. Acta 1492: 276-279.

    Google Scholar 

  • Blum, A. 1989. Osmotic adjustment and growth in barley genotypes under drought stress. Crop Sci. 29: 230-233.

    Google Scholar 

  • Busk, P.K., Jensen, A.B. and Pagès, M. 1997. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J. 11: 1285-1295.

    Google Scholar 

  • Cattivelli, L. and Bartels, D. 1990. Molecular cloning and characterization of cold-regulated genes in barley. Plant Physiol. 93: 1504-1510.

    Google Scholar 

  • Cattivelli, L., Delogu, G., Terzi, V. and Stanca, A.M. 1994. Progress in barley breeding. In: Genetic Improvement of Field Crops. G.A. Slafer (Eds.) Marcel Dekker, New York, pp. 95-181.

    Google Scholar 

  • Chauvin, L.P., Houde, M. and Sarhan, F. 1993. A leaf-specific gene stimulated by light during wheat acclimation to low temperature. Plant Mol. Biol. 23: 255-265.

    Google Scholar 

  • Choi, D.W., Koag, M.C. and Close, T.J. 1999. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dictoo. Theor. Appl. Genet 98: 1234-1247.

    Google Scholar 

  • Choi, D.W., Koag, M.C. and Close, T.J. 2000. Map locations of barley Dhn genes determined by gene-specific PCR. Theor. Appl. Genet. 101: 350-354.

    Google Scholar 

  • Crosatti, C., Soncini, C., Stanca, A.M. and Cattivelli, L. 1995. The accumulation of a cold-regulated chloroplastic protein is lightdependent. Planta 196: 458-463.

    Google Scholar 

  • Crosatti, C., Nevo, E., Stanca, A.M. and Cattivelli, L. 1996. Genetic analysis of the COR14 proteins accumulation in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theor. Appl. Genet. 93: 975-981.

    Google Scholar 

  • Crosatti, C., Polverino de Laureto, P., Bassi R. and Cattivelli, L. 1999. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119: 671-680.

    Google Scholar 

  • Cuming, A.C. 1984. Developmental regulation of gene expression in wheat embryos. Molecular cloning of a DNA sequence encoding the early methionine-labelled (Em) polypeptide. Eur. J. Biochem. 145: 351-357.

    Google Scholar 

  • Curry, J., Morris, C.F. and Walker-Simmons, M.K. 1991. Sequence analysis of a cDNA encoding a group 3 LEAmRNA inducible by ABA or dehydration stress in wheat. Plant Mol. Biol. 16: 1073-1076.

    Google Scholar 

  • Danyluk J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623-638.

    Google Scholar 

  • Dubcovsky, J., Maria, G.S., Epstein, E., Luo, M.C. and Dvorak, J. 1996. Mapping of the K+/Na+ discrimination locus in wheat. Theor. Appl. Genet. 92: 448-454.

    Google Scholar 

  • Dubcovsky J., Lijavetzky, D., Appendino L. and Tranquilli, G. 1998. Comparative mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 97: 968-975.

    Google Scholar 

  • Dunn M.A., Hughes, M.A., Pearce, R.S. and Jack, P.L. 1990. Molecular characterization of a barley gene induced by cold treatment. J. Exp. Bot. 41: 1405-1413.

    Google Scholar 

  • Dunn M.A., Hughes, M.A., Zhang, L., Pearce, R.S., Quigley, AS. and Jack, P.L. 1991. Nucleotide sequence and molecular analysis of the low-temperature induced cereal gene blt4. Mol. Gen. Genet. 229: 389-394.

    Google Scholar 

  • Dunn, M.A., Morris, A., Jack P.L. and Hughes, M.A. 1993. A lowtemperature-responsive translation elongation factor 1α from barley (Hordeum vulgare L). Plant Mol. Biol. 23: 221-225.

    Google Scholar 

  • Dunn M.A., Goddard, N.J., Zhang, L., Pearce, R.S. and Hughes, M.A. 1994. Low-temperature-responsive barley genes have different control mechanisms. Plant Mol. Biol. 24: 879-888.

    Google Scholar 

  • Dunn, M.A., Brown, K., Lightowers, R.L. and Hughes, M.A. 1996. A low-temperature-responsive gene from barley encodes a protein with single stranded nucleic acid binding activity which is phosphorylated in vitro. Plant Mol. Biol. 30: 947-959.

    Google Scholar 

  • Dunn, M.A., White, A.J., Vural, S and Hughes, M.A. 1998. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol. Biol. 38: 551-564.

    Google Scholar 

  • Dure, L. III 1993. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3: 363-369.

    Google Scholar 

  • Ellis, R., Forster, B.P., Waugh, R., Bonar, N., Handley, L.L., Robinson, D., Gordon, D.C. and Powell, G. 1997. Mapping physiological traits in barley. New Phytol. 137: 149-157.

    Google Scholar 

  • Espelund M., Saeboe-Larssen, S., Hughes, D.W., Galau, G.A., Larsen F. and Jakobsen, K. 1992. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J. 2: 241-252.

    Google Scholar 

  • Faris J.D., Li, W.L., Liu, D.J., Chen, P.D. and Gill, B.S. 1999. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 98: 219-225.

    Google Scholar 

  • Farquhar, G.D. and Richardson, R.A. 1984. Isotopic composition of plants correlates with water use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539-552.

    Google Scholar 

  • Forster, B.P., Phillips, M.S., Miller, T.E., Baird, E. and Powell, W. 1990. Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65: 99-107.

    Google Scholar 

  • Fowler D.B., Chauvin, L.P., Limin, A.E. and Sarhan, F. 1996. The regulatory role of vernalization in the expression of lowtemperature-induced genes in wheat and rye. Theor. Appl. Genet. 93: 554-559.

    Google Scholar 

  • Franckowiak, J. 1997. Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet. Newsl. 26: 9-21.

    Google Scholar 

  • Fridman, E., Pleban, T. and Zamir, D. 2000. A recombinant hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene Proc. Natl. Acad. Sci. USA 97: 4718-4723.

    Google Scholar 

  • Gai, X.W., Lal, S., Xing, L.Q., Brendel, V. and Walbot, V. 2000. Gene discovery using the maize genome database ZmDB. Nucl. Acids Res. 28: 94-96.

    Google Scholar 

  • Galiba G., Quarrie, S.A., Sutka, J., Morgounov, A. and Snape, J.W. 1995. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 90: 1174-1179.

    Google Scholar 

  • Gallagher, L.W., Solimann, K.M., Vivar, H. 1991. Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci. 31: 256-261.

    Google Scholar 

  • Gana, J.A., Sutton, F. and Kenefick, D.G. 1997. cDNA structure and expression patterns a low-temperature-specific wheat gene tacr7. Plant Mol. Biol. 34: 643-650.

    Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M. and Thomashow, M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J. 16: 433-443.

    Google Scholar 

  • Goddard, N.J., Dunn, M.A., Zhang, L., White, A.J., Jack, P.L. and Hughes, M.A. 1993. Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt101. Plant Mol. Biol. 23: 871-879.

    Google Scholar 

  • Gorny, A.G. 1999. Effects of D-genome substitutions on the water use efficiency and of the 'Langdon' durum wheat to reduced nitrogen nutrition. Cereal Res. Comm. 27: 83-90.

    Google Scholar 

  • Grossi, M., Gulli, M., Stanca, A.M. and Cattivelli, L. 1995. Characterization of two barley genes that respond rapidly to dehydration stress. Plant Sci. 105: 71-80.

    Google Scholar 

  • Grossi, M., Giorni, E., Rizza, F., Stanca, A.M. and Cattivelli, L. 1998. Wild and cultivated barleys show differences in the expression pattern of a cold-regulated gene family under different light and temperature conditions. Plant Mol. Biol. 38: 1061-1069.

    Google Scholar 

  • Guiltinan, M.J., Marcotte, W.R. Jr, and Quatrano, R.S. 1990. A plant leucine zipper protein that recognizes an abscisic acid-responsive element. Science 250: 267-271.

    Google Scholar 

  • Handley, L.L., Nevo, E., Raven, J.A., Martines-Carrasco, R., Scrimgeour, C.M., Pakniyat, H. and Forster, B.P. 1994. Chromosome 4 controls potential water use efficiency (δ13) in barley. J. Exp. Bot. 45: 1661-663.

    Google Scholar 

  • Hayes P.M., Blake, T., Chen, T.H.H., Tragoonrung, S., Chen, F., Pan, A. and Liu, B. 1993. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome-7 associated with components of winterhardiness. Genome 36: 66-71.

    Google Scholar 

  • Hockett, E.A. and Nilan, R.A. 1985. Genetics. In: D.C. Rasmusson (Ed.), Barley, ASA/CSSA/SSSA, Madison, WI, pp. 187-230.

    Google Scholar 

  • Hollung, K., Espelund, M. and Jakobsen, K.S. 1994. Another Lea B19 gene (Group 1 barley containing a single 20 amino acid hydrophilic motif Plant Mol. Biol. 25: 559-564.

    Google Scholar 

  • Hong, B., Barg R. and Ho, T.-O. 1992. Developmental and organspecific expression of an ABA-and stress-induced protein in barley. Plant Mol. Biol. 18: 663-674.

    Google Scholar 

  • Houde, M., Danyluk, J., Laliberté, J-F., Rassart, E., Dhindsa, R.S. and Sarhan, F. 1992. Cloning, characterization, and expression of a cDNA encoding a 50-Kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 99: 1381-1387.

    Google Scholar 

  • Ishitani, M., Nakamura, T., Han, S.Y. and Takabe, T. 1995. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol. Biol. 27: 307-315.

    Google Scholar 

  • Ismail, A.M., Hall, A.E. and Close, T.J. 1999. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. USA 96: 13566-13570.

    Google Scholar 

  • Jiang, C., Iu, B., Singh, J. 1996. Requirement of a CCGAC cisacting element for cold induction of BN115 gene from B. napus. Plant Mol. Biol. 30: 679-684.

    Google Scholar 

  • Joshee, N., Kisaka, H. and Kitagawa, Y. 1998. Isolation and characterization of a water stress-specific genomic gene, pwsi18, from rice. Plant Cell Physiol. 39: 64-72.

    Google Scholar 

  • Joshi, C.P., King, S.W., Nguyen, H.T. 1992. Molecular cloning and characterization of a cDNA encoding a water stress protein (wsp23) from wheat roots. Plant Sci. 86: 71-82.

    Google Scholar 

  • Kasai K., Fukayama, H., Uchida, N., Mori, N., Yasuda, T., Oji, Y. and Nakamura, C. 1998. Salinity tolerance in Triticum aestivum-Lophopyrum elongatum amphiploid and 5E disomic addition line evaluated by NaCl effects on photosynthesis and respiration. Cereal Res. Comm. 26: 281-287.

    Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17: 287-291.

    Google Scholar 

  • Kato K., Miura H. and Sawada, S. 1999. Comparative mapping of the wheat Vrn-A1 region with the rice Hd-6 region. Genome 42: 204-209.

    Google Scholar 

  • King, S.W., Joshi, C.P. and Nguyen, H.T. 1992. DNA sequence of an ABA responsive gene (rab15) from water-stressed wheat roots. Plant Mol. Biol. 18: 119-121.

    Google Scholar 

  • Knight, CD., Sehgal, A., Atwal, K., Wallace, J.C., Cove, D.J., Coates, D., Quatrano, R.S., Bahadur, S., Stockley, P.G. and Cuming, A. 1995. Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7: 499-506.

    Google Scholar 

  • Knight, H., Veale, E.L., Warren, G.J. and Knight, M.R. 1999. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT DRE sequence motif. Plant Cell 11: 875-886.

    Google Scholar 

  • Koebner, R.M.D., Martin, P.K., Orford, S.M. and Miller, T.E. 1996. Responses to salt stress controlled by the homeologous group 5 chromosomes of hexaploid wheat. Plant Breed. 115: 81-84.

    Google Scholar 

  • Koike, M., Takezawa, D., Arakawa, K. and Yoshida, S. 1997. Accumulation of 19-kDa plasma membrane polypeptide during induction of freezing tolerance in wheat suspension-cultured cells by abscisic acid. Plant Cell Physiol. 38: 707-716.

    Google Scholar 

  • Kurek, I., Harvey, A.J., Lonsdale, D.M. and Breiman, A. 2000. Isolation and characterization of the wheat prolyl isomerase FK506-binding protein (FKBP) 73 promoter. Plant Mol. Biol. 42: 489-497.

    Google Scholar 

  • Labhilili, M., Jourdier, P. and Gautier, M-F. 1995. Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Sci. 112: 219-230.

    Google Scholar 

  • Langridge, P., Karakousis, A., Collins, N., Kretschmer J. and Manning, S. 1995. A consensus linkage map of barley (Hordeum vulgare L.). Mol. Breed. 1: 389-395.

    Google Scholar 

  • Laurie, D.A. 1997. Comparative genetics of flowering time. Plant Mol. Biol. 35: 167-177.

    Google Scholar 

  • Laurie, D.A., Pratchett, N., Bezant, J.H. and Snape, J.W. 1994. Genetic analysis of a photoperiod response gene on the short arm of chromosome 2(2H) of Hordeum vulgare (barley). Heredity 72: 619-627.

    Google Scholar 

  • Laurie, D.A., Pratchett, N., Bezant, J.H. and Snape, J.W. 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38: 575-585.

    Google Scholar 

  • Law, C.N. 1966. The location of genetic factors affecting a quantitative character in wheat. Genetics 53: 487-493.

    Google Scholar 

  • Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 199-222.

    Google Scholar 

  • Li, Z.Y. and Chen, S.Y. 2000. Isolation and characterization of a salt-and drought-inducible gene for S-adenosylmethionine decarboxylase from wheat (Triticum aestivum L.). Plant Physiol. 156: 386-393.

    Google Scholar 

  • Lilley, J.M., Ludlow, M.M., McCouch, S.R. and O'Toole, J.C. 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J. Exp. Bot. 47: 1427-1436.

    Google Scholar 

  • Litts, J.C., Colwell, G.W., Chakerian, R.L. and Quatrano, R.S. 1987. The nucleotide sequence of a cDNA clone encoding the wheat Em protein. Nucl. Acids. Res. 15: 3607-3618.

    Google Scholar 

  • Liu, Q., Sakuma, Y., Abe, H., Kasuga, M., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcriptional factors, DREB1 and DREB2, with an EREP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406.

    Google Scholar 

  • Maes, T., De Keukeleire, P. and Gerats, T. 1999. Plant tagnology. Trends Plant Sci. 4: 90-96.

    Google Scholar 

  • Mano, Y. and Takeda, K. 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94: 263-272.

    Google Scholar 

  • Marcotte, W.R. Jr, Russel, S.H. and Quatrano, R.S. 1989. Abscisic acid response sequences from the Em gene of wheat. Plant Cell 1: 969-976.

    Google Scholar 

  • Mastrangelo, A.M., Baldi, P., Maré, C., Terzi, V., Galiba, G., Cattivelli, L. and Di Fonzo, N. 2000. The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting frost tolerance is regulated by different mRNA expression and protein turnover. Plant Sci. 156: 47-54.

    Google Scholar 

  • McIntosh, R.A., Hart, G.E. and Gale, M.D. 1998. Catalogue of gene symbols for wheat. Proceedings 9th International Wheat Genetics Symposium, Saskatchewan, Canada, pp. 1333-1500.

  • Mekhedov, S., de Ilarduya, O.M. and Ohlrogge, J. 2000. Toward a functional catalogue of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol. 122: 389-401.

    Google Scholar 

  • Misawa, S., Mori, N., Takumi, S., Yoshida, S. and Nakamura, C. 2000. Mapping of QTLs for low temperature response in seedling of rice (Otyza sativa L.). Cereal Res. Comm. 28: 33-41.

    Google Scholar 

  • Molina-Cano, J.L., Sopena, A., Swanston, J.S., Casas, A.M., Moralejo, M.A., Ubieto, A., Lara, I., Perez-Vendrell, A.M. and Romagosa, I. 1999. A mutant induced in the malting barley cv. Triumph with reduced dormancy and ABA response. Theor. Appl. Genet. 98: 347-355.

    Google Scholar 

  • Morgan, J.M. and Tan, M.K. 1996. Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust. J. Plant Physiol. 23: 803-806.

    Google Scholar 

  • Mudgett, M.B. and Clarke, S. 1994. Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat. J. Biol. Chem. 269: 25605-25612.

    Google Scholar 

  • Mullarkey, M. and Jones, P. 2000. Isolation and analysis of thermotolerant mutants of wheat. J. Exp. Bot. 51: 139-146.

    Google Scholar 

  • Mundy, J., Yamaguchi-Shinozaki, K. and Chua, N-H. 1990. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87: 1406-1410.

    Google Scholar 

  • Muramoto, Y., Watanabe, A., Nakamura, T. and Takabe, T. 1999. Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 234: 315-321.

    Google Scholar 

  • Nakagawa, H., Ohmiya, K. and Hattori, T. 1996. A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J. 9: 217-227.

    Google Scholar 

  • Nemoto, Y., Kawakami, N. and Sasakuma, T. 1999. Isolation of novel early salt-responsive genes from wheat (Triticum aestivum L.) by differential display. Theor. Appl. Genet. 98: 673-678.

    Google Scholar 

  • Nuccio, M..L., Rhodes, D., McNeil, S.D. and Hanson, A.D. 1999. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol. 2: 128-134.

    Google Scholar 

  • Ohlrogge, J. and Benning, C. 2000. Unravelling plant metabolism by EST analysis. Curr. Opin. Plant Biol. 3: 224-228.

    Google Scholar 

  • Ouellet, F., Vazquez-Tello, A. and Sarhan, F. 1998. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett. 423: 324-328.

    Google Scholar 

  • Pan, A., Hayes, P.M., Chen, F., Chen, T.H.H., Blake, T., Wright, S., Karsai, I. and Bedö, Z. 1994. Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor. Appl. Genet. 89: 900-910.

    Google Scholar 

  • Pearce, R.S., Houlston, C.E., Atherton, K.M., Rixon, J.E., Harrison, P., Hughes, M.A. and Dunn, M.A. 1998. Localization of expression of three cold-induced genes, blt101, blt4.9 and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiol. 117: 787-795.

    Google Scholar 

  • Phillips, J.R., Dunn, M.A. and Hughes, M.A. 1997. mRNA stability and localisation of the low-temperature-responsive gene family blt14. Plant Mol. Biol. 33: 1013-1023.

    Google Scholar 

  • Plaschke, J., Borner, A., Xie, D.X., Koebner, R.D.M., Schlegel, R. and Gale, M.D. 1993. RFLP mapping of genes affecting plant height and growth habit in rye. Theor. Appl. Genet. 85: 1049-1054.

    Google Scholar 

  • Pugsley, A.T. 1973. Control of developmental patterns in wheat through breeding. Proc. 4th International Wheat Genetics Symposium, pp. 857-859.

  • Qi, X., Stam, P. and Lindhout, P. 1996. Comparison and integration of four barley genetic maps. Genome 39: 379-394.

    Google Scholar 

  • Quarrie, S.A., Gulli, M., Calestani, C., Steed, A. and Marmiroli, N. 1994. Location of a gene regulation drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor. Appl. Genet. 89: 794-800.

    Google Scholar 

  • Rascio, A., Russo, M., Mazzucco, L., Platani, C., Nicastro, G. and Di Fonzo, N. 2001. Enhanced osmotolerance of a wheat mutant selected for potassium accumulation. Plant Sci. 160: 441-448.

    Google Scholar 

  • Rascio, A., Russo, M., Platani, C., Ronga, G. and Di Fonzo, N. 1999. Mutants of durum wheat with alterations in tissue affinity for strongly bound water. Plant Sci. 144: 29-34.

    Google Scholar 

  • Raskin, I., and Ladyman, J.A.R. 1988. Isolation and characterization of a barley mutant with abscisic-acid-insensitive stomata. Planta 173: 73-78.

    Google Scholar 

  • Richmond, T. and Somerville, S. 2000. Chasing the dream: plant EST microarray. Curr. Opin. Plant Biol. 3: 108-116.

    Google Scholar 

  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23: 319-327.

    Google Scholar 

  • Sarhan, F. and Danyluk, J. 1998. Engineering cold-tolerant crops throwing the master switch. Trends Plant Sci. 3: 289-290.

    Google Scholar 

  • Shen, Q. and Ho, T.-H.D. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABAresponsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307.

    Google Scholar 

  • Shen, Q., Zhang, P.N. and Ho, T.-H.D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107-1119.

    Google Scholar 

  • Shimosaka, E., Sasauma, T. and Handa, H. 1999. A wheat cold-regulated cDNA encoding an early light-inducible protein (ELIP): its structure, expression and chromosomal location. Plant Cell Physiol. 40: 319-325.

    Google Scholar 

  • Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.D. and Qu, R. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155: 1-9.

    Google Scholar 

  • Skriver, K., Olsen, P.L., Rogers, J.C. and Mundy, J. 1991. Cisacting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc. Natl. Acad. Sci. USA 88: 7266-7270.

    Google Scholar 

  • Snape, J.W., Quarrie, S.A., and Laurie, D.A. 1996. Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica 89: 27-31.

    Google Scholar 

  • Snape, J.W., Semikhodskii, A., Fish, L., Sarma, R.N., Quarrie, S.A., Galiba, G. and Sutka J. 1997. Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agric. Hung. 45: 265-270.

    Google Scholar 

  • Stokinger, E.J., Gilmour, S.J., and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035-1040.

    Google Scholar 

  • Storlie, E.W., Allan, R.E. and Walker-Simmons, M.K. 1998. Effect of the Vrn1-Fr1 interval on cold hardiness levels in near-isogenic wheat lines. Crop Sci. 38: 483-488.

    Google Scholar 

  • Straub, P.F., Shen, Q., Ho, T.-H.D. 1994. Structure and promoter analysis of an ABA-and stress-regulated barley gene HVA1. Plant Mol. Biol. 26: 617-630.

    Google Scholar 

  • Sutka, J., Galiba, G., Vaguifalvi, A., Gill, B.S. and Snape, J.W. 1999. Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using delition lines. Theor. Appl. Genet. 99: 199-202.

    Google Scholar 

  • Sutka, J. and Snape, J.W. 1989. Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42: 41-44.

    Google Scholar 

  • Sutton, F., Ding, X. and Kenefrik, D.G. 1992. Group 3 Lea genes HVA1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance. Plant Physiol. 99: 338-340.

    Google Scholar 

  • Swire-Clark, G.A. and Marcotte, W.R. 1999. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol. Biol. 39: 117-128.

    Google Scholar 

  • Teulat, B., Monneveux, P., Wery, J., Borries, C., Souyris, I., Charrier, A. and This D. 1997. Relationship between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol. 137: 99-107.

    Google Scholar 

  • Teulat, B., This, D., Khairallah, M., Borries, C., Ragot, C., Sourdille, P., Leroy, P., Monneveux P. and Charrier, A. 1998. Several QTLs involved in osmotic-adjustment trait variation in barley. Theor. Appl. Genet. 96: 688-698.

    Google Scholar 

  • Tuberosa, R., Galiba, G., Sanguineti, M.C., Noli E. and Sutka, J. 1997. Identification of QTL influencing freezing tolerance in barley. Acta Agric. Hung. 45: 413-417.

    Google Scholar 

  • Vagujfalvi, A., Crosatti, C., Galiba, G., Dubcovsky J. and Cattivelli L. 2000. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol. Gen. Genet. 263: 194-200.

    Google Scholar 

  • Van Deynze, A.E., Nelson, J.C., Yglesias, E.S., Harrington, S.E., Braga, D.P., McCouch, S.R. and Sorrells, M.E. 1995. Comparative mapping in grasses: wheat relationships. Mol. Gen. Genet. 248: 748-754.

    Google Scholar 

  • Wood, A.J., Duff, R.J. and Oliver, M.J. 1999. Expressed sequence tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol. 40: 361-368.

    Google Scholar 

  • Worland, A.J. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89: 49-57.

    Google Scholar 

  • Xin, Z. and Browse, J. 1998. eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA 95: 7799-7804.

    Google Scholar 

  • Xu, K. and Mackill, D.J. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed. 2: 219-224.

    Google Scholar 

  • Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.-H.D. and Wu, R. 1996. Expression of late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.

    Google Scholar 

  • Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress. Plant Cell 6: 251-264.

    Google Scholar 

  • Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto K., Umehara Y., Nagamura Y. and Sasaki T. 2000. Hd1, major photoperiod-sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANT. Plant Cell 12: 2473-2484.

    Google Scholar 

  • Yet, S., Moffatt, B.A., Griffith, M., Xiong, F., Yang, D.S.C., Wiseman, S.B., Sarhan, F., Danyluk, J., Xue, Y.Q., Hew, C.L., Doeherty-Kirby, A. and Lajoie G. 2000. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124: 1251-1263.

    Google Scholar 

  • Zhu, B., Choi, D-W., Fenton, R. and Close, T.J. 2000. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264: 145-153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattivelli, L., Baldi, P., Crosatti, C. et al. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae . Plant Mol Biol 48, 649–665 (2002). https://doi.org/10.1023/A:1014824404623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014824404623

Navigation