Skip to main content
Log in

Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badr, A., Mueller, K., Schaefer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W. and Salamini, F. 2000. On the origin and domestication history of barley (Hordeum vulgare). Mol. Biol. Evol. 17: 499-510.

    Google Scholar 

  • Davis, M.P., Franckowiak, J.D., Konishi, T. and Lundqvist, U. (Eds.). 1996. Barley Genetics Newsletter Vol. 26 (Special Issue). American Malting Barley Association, Milwaukee, WI.

    Google Scholar 

  • Baum, B.R., Nevo, E., Johnson, D.A. and Beiles, A. 1997. Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using randomly amplified polymorphic DNA (RAPD) markers. Genet. Resources Crop Evol. 44: 147-157.

    Google Scholar 

  • Becker, J. and Heun, M. 1995. Barley microsatellites: allele variation and mapping. Plant Mol. Biol. 27: 835-845.

    Google Scholar 

  • Bennett, M.D. and Smith, J.B. 1976. Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. Lond. B274: 227-274.

    Google Scholar 

  • Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 1984. Classification and Regression Trees. Wadsworth and Brooks/Cole, Monterey.

    Google Scholar 

  • Chalmers, K.J., Waugh, R., Watters, J., Forster, B.P., Nevo, E., Abbott, R.J. and Powell, W. 1992. Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theor. Appl. Genet. 84: 313-322.

    Google Scholar 

  • Chojecki, J., Barnes, S. and Dunlop, A. 1989. A molecular marker for vernalization requirement in barley. In: T. Helentjaris and B. Burr (Eds.) Development and Application of Molecular Markers to Problems in Plant Genetics, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 145-148.

    Google Scholar 

  • Dawson, I.K., Chalmers, J.K., Waugh, R. and Powell, W. 1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 2: 151-159.

    Google Scholar 

  • Doll, H. and Brown, A.H.D. 1979. Hordein variation in wild (Hordeum spontaneum) and cultivated barley (H. vulgare). Can. J. Genet. Cytol. 21: 391-404.

    Google Scholar 

  • Ellis, R.P., Forster, B.P., Robinson, D., Handley, L.L., Gordon, D.C., Russell, J.R. and Powell, W. 2000. Wild barley: a source of genes for crop improvement in the 21st century? J. Exp. Bot. 51: 9-17.

    Google Scholar 

  • Excoffier, L., Smouse, P.E. and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

    Google Scholar 

  • Forster, B.P., Russell, J.R., Ellis, R.P., Handley, L.L., Robinson, D., Hackett, C.A., Nevo, E., Waugh, R., Gordon, D.C., Keith, R. and Powell, W. 1997. Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytol. 137: 141-147.

    Google Scholar 

  • Graner, A., Streng, S., Kellermann, A., Schiemann, A., Bauer, E., Waugh, R., Pellio, B. and Ordon, F. 1999. Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the Barley Yellow Mosaic Virus Complex. Theor. Appl. Genet. 98: 285-290.

    Google Scholar 

  • Harlan, J.R. 1968. On the origin of barley. In: USDA Agriculture Handbook 338, pp. 9-31.

  • Harlan, J.R. 1995. Barley. In: J. Smartt and N.W. Simmonds (Eds.) Evolution of Crop Plants, 2nd ed., Longman, London, pp. 140-146.

    Google Scholar 

  • Ivandic, V., Walther, U. and Graner, A. 1998. Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theor. Appl. Genet. 97: 1235-1239.

    Google Scholar 

  • Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulman, A.H. 2000. Genome-evolution of wild barley (Hordeum spontaneum) by BARE-1 retroposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603-6607.

    Google Scholar 

  • Kashi, Y., King, D. and Stoller, M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 13: 74-78.

    Google Scholar 

  • Kimura, M. and Crow, J.F. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725-738.

    Google Scholar 

  • Kimura, M. and Ohta, T. 1978. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA 75: 2868-2872.

    Google Scholar 

  • Koornneef, M., Alonso-Blanco, C. and Peeters, A.J.M. 1997. Genetic approaches in plant physiology. New Phytol. 137: 1-8.

    Google Scholar 

  • Laurie, D.A., Pratchett, N., Bezant, J.H. and Snape, J.W. 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter H spring barley (Hordeum vulgare L.) cross. Genome 38: 575-585.

    Google Scholar 

  • Lev-Yadun, S., Gopher, A. and Abbo, S. 2000. The cradle of agriculture. Science 288: 1602-1603.

    Google Scholar 

  • Li, C.-D., Zhang, X.-Q., Eckstein, P., Rossnagel, B.G. and Scoles, G.J. 1999. A polymorphic microsatellite in the limit dextrinase gene of barley (Hordeum vulgare L.). Mol. Breed. 5: 569-577.

    Google Scholar 

  • Liu, Z.-W., Biyashev, R.M. and Saghai-Maroof, M.A. 1996. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor. Appl. Genet. 93: 869-876.

    Google Scholar 

  • Marmiroli, N., Maestri, E., Liviero, L., Massari, A., Malcevschi, A. and Monciardini, P. 1999. Application of genomics in assessing biodiversity in wild and cultivated barley. Mol. Ecol. 8: S95-S106.

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.

    Google Scholar 

  • Nevo, E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: P.R. Shewry (Ed.) Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford, Oxon, UK, pp. 19-43.

    Google Scholar 

  • Nevo, E., Zohary, D., Brown, A.H.D. and Haber, M. 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33: 815-833.

    Google Scholar 

  • Nevo, E., Beiles, A., Storch, N., Doll, H. and Andersen, B. 1983. Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor. Appl. Genet. 64: 123-132.

    Google Scholar 

  • Nevo, E., Beiles, A., Gutterman, Y., Storch, N. and Kaplan, D. 1984. Genetic resources of wild cereals in Israel and vicinity. II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33: 737-756.

    Google Scholar 

  • Nevo, E., Beiles, A., Kaplan, D., Storch, N. and Zohary, D. 1986a. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum (Poaceae), in Iran. Plant Systemat. Evol. 153: 141-164.

    Google Scholar 

  • Nevo, E., Beiles, A. and Zohary, D. 1986b. Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biol. J. Linn. Soc. 27: 355-380.

    Google Scholar 

  • Nevo, E., Zohary, D., Beiles, A., Kaplan, D. and Storch, N. 1986c. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Turkey. Genetica 68: 203-213.

    Google Scholar 

  • Nevo, E., Baum, B., Beiles, A. and Johnson, D.A. 1998. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent. Genet. Resources Crop Evol. 45: 151-159.

    Google Scholar 

  • Ohta, T. and Kimura, M. 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22: 201-204.

    Google Scholar 

  • Owuor, E.D., Fahima, T., Beharav, A., Korol, A. and Nevo, E. 1999. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105: 177-192.

    Google Scholar 

  • Pakniyat, H., Powell, W., Baird, E., Handley, L.L., Robinson, D., Scrimgeour, C.M., Nevo, E., Hackett, C.A., Caligari, P.D.S. and Forster, B.P. 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332-341.

    Google Scholar 

  • Petersen, L., Østergård, H. and Giese, H. 1994. Genetic diversity among wild and cultivated barley as revealed by RFLP. Theor. Appl. Genet. 89: 676-681.

    Google Scholar 

  • Powell, W., Machray, G.C. and Provan, J. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.

    Google Scholar 

  • Rafalski, J.A. and Tingey, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9: 275-280.

    Google Scholar 

  • Ramsay, L., Macaulay, M., degli Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J., Edwards, K., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. and Waugh, R. 2000. A simple sequence repeat-based map of barley. Genetics 156: 1997-2005.

    Google Scholar 

  • Russell, J., Fuller, J., Young, G., Thomas, W.T.B., Taramino, G., Macaulay, M., Waugh, R. and Powell, W. 1997. Discriminating between barley genotypes using microsatellite markers. Genome 40: 442-450.

    Google Scholar 

  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. 1984. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014-8018.

    Google Scholar 

  • Saghai-Maroof, M.A., Biyashev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. Proc. Natl. Acad. Sci. USA 91: 5466-5470.

    Google Scholar 

  • Schneider, S., Kueffer, J-M., Roessli, D. and Excoffier, L. 1997. Arlequin ver. 1.1: A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457-462.

    Google Scholar 

  • Struss, D. and Plieske, P. 1998. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor. Appl. Genet. 97: 308-315.

    Google Scholar 

  • Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17: 6463-6471.

    Google Scholar 

  • Tautz, D. and Renz, M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acids Res. 12: 4127-4138.

    Google Scholar 

  • Turpeinen, T., Kulmala, J. and Nevo, E. 1999 Genome size variation in Hordeum spontaneum populations. Genome 42: 1094-1099.

    Google Scholar 

  • Vicient, C.M., Suoniemi, A., Anamthawat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E and Schulman, A.H. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11: 1769-1784.

    Google Scholar 

  • Weir, B.S. and Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

    Google Scholar 

  • Yasuda, S. and Hayashi, J. 1980. Linkage and the effect of the earliness gene eac involved in Chinese cultivars on yield and yield components in barley. Barley Genet. Newsl. 10: 74-76.

    Google Scholar 

  • Yeh, F.C, Yang, R.-C., Boyle, T.B.J., Ye, Z.-H. and Mao, J.X. 1997. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada.

    Google Scholar 

  • Zohary, D. 1969. The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the old world. In: P.J. Ucko and G.W. Dimbelby (Eds.) Domestication and Exploitation of Plants and Animals, Gerald Duckworth, London, pp. 47-66.

    Google Scholar 

  • Zohary, D. and Hopf, M. 1988. Domestication of Plants in the Old World. Clarendon, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivandic, V., Hackett, C.A., Nevo, E. et al. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48, 511–527 (2002). https://doi.org/10.1023/A:1014875800036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014875800036

Navigation