Skip to main content
Log in

Power and Efficiency of the TDT and Case-Control Design for Association Scans

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Sample size required for the TDT and the case-control designs was studied for marker-based genome-wide scans for disease association. The influence of various parameters on sample size required to attain a given level of power was analyzed in detail. Small genotypic relative risks, low levels of linkage disequilibrium, and departure from equal frequencies for the disease allele and associated marker allele, significantly and similarly increase sample size required by either the TDT or case-control design. Under the case-control paradigm, we show that the optimal strategy will often be to collect many more control individuals than disease cases with the optimal ratio depending on the relative cost of acquiring cases as compared to controls. For the TDT, the number of required simplex families is virtually equal to the number of cases required for similar power in case-control studies with an equal number of cases and controls. The case-control approach may therefore prove to be more economical and expeditious than the TDT design for diseases in which the cost and time required to collect simplex families is much greater than that needed to acquire isolated disease cases. Nevertheless, possible population stratification needs to be addressed when the case-control design is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abecasis, G. R., Noguchi, E., Heinzmann, A., Traherne, J. A., Bhattacharyya, S., Leaves, N. I., and Anderson, G. G. (2000). Extent and distribution of linkage disequilibrium in three genomic regions. Am. J. Hum. Genet. 68.

  • Abel, L., and Muller-Myhsok, B. (1998). Maximum-likelihood expression of the transmission/disequilibrium test and power considerations [letter]. Am. J. Hum. Genet. 63:664–667.

    Google Scholar 

  • Arnheim, N., Strange, C., and Erlich, H. (1985). Use of pooled DNA samples to detect linkage disequilibrium of polymorphic restriction fragments and human disease: Studies of the HLA class II loci. Proc. Natl. Acad. Sci. USA 82:6970–6974.

    Google Scholar 

  • Barcellos, L. F., Klitz, W., Field, L. L., Tobias, R., Bowcock, A. M., Wilson, R., and Nelson, M. P., et al. (1997). Association mapping of disease loci, by use of a pooled DNA genomic screen. Am. J. Hum. Genet. 61:734–747.

    Google Scholar 

  • Boehnke, M., and Langefeld, C. D. (1998). Genetic association mapping based on discordant sib pairs: The discordant-alleles test. Am. J. Hum. Genet. 62:950–961.

    Google Scholar 

  • Camp, N. J. (1997). Genomewide transmission/disequilibrium testing —Consideration of the genotypic relative risks at disease loci [see comments] [published erratum appears in Am. J. Hum. Genet. 1999 May;64(5):1485–1487]. Am. J. Hum. Genet. 61: 1424–1430.

    Google Scholar 

  • Collins, A., Lonjou, C., and Morton, N. E. (1999). Genetic epidemiology of single-nucleotide polymorphisms [see comments]. Proc. Natl. Acad. Sci. USA 96:15173–15177.

    Google Scholar 

  • Curtis, D. (1997). Use of siblings as controls in case-control association studies [published erratum appears in Ann. Hum. Genet. 1998 Jan;62(Pt 1):89]. Ann. Hum. Genet. 61:319–333.

    Google Scholar 

  • Devlin, B., and Roeder, K. (1999). Genomic control for association studies. Biometrics 55:997–1004.

    Google Scholar 

  • Goddard, K. A., Hopkins, P. J., Hall, J. M., and Witte, J. S. (2000). Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am. J. Hum. Genet. 66:216–234.

    Google Scholar 

  • Kruglyak, L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139–144.

    Google Scholar 

  • Lander, E., and Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results [see comments]. Nat. Genet. 11:241–247.

    Google Scholar 

  • Lewontin, R. C. (1988). On measures of gametic disequilibrium. Genetics 120:849–852.

    Google Scholar 

  • McGinnis, R. (2000). General equations for Pt, Ps, and the power of the TDT and the affected-sib-pair test. Am. J. Hum. Genet. 67: 1340–1347.

    Google Scholar 

  • McGinnis, R. E. (1998). Hidden linkage: A comparison of the affected sib pair (ASP) test and transmission/disequilibrium test (TDT). Ann. J. Hum. Genet. 62:159–179.

    Google Scholar 

  • Moffatt, M. F., Traherne, J. A., Abecasis, G. R., and Cookson, W. O. (2000). Single nucleotide polymorphism and linkage disequilibrium within the TCR alpha/delta locus. Hum. Mol. Genet. 9:1011–1019.

    Google Scholar 

  • Muller-Myhsok, B., and Abel, L. (1997). Genetic analysis of complex diseases [letter; comment]. Science 275:1328–1329; discussion 1329–1330.

    Google Scholar 

  • Pritchard, J., and Rosenberg, N. (1999). Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65:220–228.

    Google Scholar 

  • Reich, D., Cargill, M., Bolk, S., Ireland, J., Sabeti, P., Richter, D., Lavery, T., Kouyouinjian, R., Farhadian, S., Ward, R., and Lander, E. (2001). Linkage disequilibrium in the human genome. Nature 411:199–204.

    Google Scholar 

  • Risch, N., and Merikangas, K. (1996). The future of genetic studies of complex human diseases [see comments]. Science 273:1516–1517.

    Google Scholar 

  • Shifman, S., and Darvasi, A. (2001). The value of isolated populations. Nat. Genet. 28:309–310.

    Google Scholar 

  • Slager, S., and Schaid, D. (2001). Evaluation of candidate genes in case-control studies: A statistical method to account for related subjects. Am. J. Hum. Genet. 68:1457–1462.

    Google Scholar 

  • Spielman, R. S., and Ewens, W. J. (1998). A sibship test for linkage in the presence of association: the sib transmission /disequilibrium test. Am. J. Hum. Genet. 62:450–458.

    Google Scholar 

  • Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52:506–516.

    Google Scholar 

  • Taillon-Miller, P., Bauer-Sardina, I., Saccone, N. L., Putzel, J., Laitinen, T., Cao, A., and Kere, J. (2000). Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28 [see comments]. Nat. Genet. 25:324–328.

    Google Scholar 

  • Tu, I. P., and Whittemore, A. S., (1999). Power of association and linkage tests when the disease alleles are unobserved. Am. J. Hum. Genet. 64:641–649.

    Google Scholar 

  • Xiong, M., and Guo, S. W. (1998). The power of linkage detection by the transmission/disequilibrium tests. Hum. Hered. 48: 295–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph McGinnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGinnis, R., Shifman, S. & Darvasi, A. Power and Efficiency of the TDT and Case-Control Design for Association Scans. Behav Genet 32, 135–144 (2002). https://doi.org/10.1023/A:1015205924326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015205924326

Navigation