Skip to main content
Log in

Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Inflammatory breast cancer (IBC) is the most lethal form of locally advanced breast cancer known. IBC carries a guarded prognosis primarily due to rapid onset of disease, typically within six months, and the propensity of tumor emboli to invade the dermal lymphatics and spread systemically. Although the clinical manifestations of IBC have been well documented, until recently little was known about the genetic mechanisms underlying the disease. In a comprehensive study aimed at identifying the molecular mechanisms responsible for the unique IBC phenotype, our laboratory identified overexpression of RhoC GTPase in over 90% of IBC tumors in contrast to 36% of stage-matched non-IBC tumors. We also demonstrated that overexpression of RhoC GTPase in human mammary epithelial (HME) cells nearly recapitulated the IBC phenotype with regards to invasion, motility and angiogenesis. In the current study we sought to delineate which signaling pathways were responsible for each aspect of the IBC phenotype. Using well-established inhibitors to the mitogen activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) pathways. We found that activation of the MAPK pathway was responsible for motility, invasion and production of angiogenic factors. In contrast, growth under anchorage independent conditions was dependent on the PI3K pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levine PH, Steinhorn SC, Ries LG et al. Inflammatory breast cancer: The experience of the surveillance, epidemiology, and end results (SEER) program.J Natl Cancer Inst1985;74:291–7.

    PubMed  CAS  Google Scholar 

  2. Jaiyesimi I, Buzdar A, Hortobagyi G. Inflammatory breast cancer: A review.J Clin Oncol1992;10:1014–24.

    PubMed  CAS  Google Scholar 

  3. Beahrs O, Henson D, Hutter R (eds). Manual for Staging of Cancer. Philadelphia: Lippincott1988;145–50.

    Google Scholar 

  4. Kleer cg, van Golen KL, Merajver SD. Molecular biology of breast cancer metastasis. Inflammatory breast cancer: Clinical syndrome and molecular determinants.Breast Cancer Res 2000;2:423–9.

    Article  PubMed  CAS  Google Scholar 

  5. van Golen KL, Davies S, Wu ZF et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype.Clin Cancer Res1999;5:2511–9.

    PubMed  CAS  Google Scholar 

  6. Ridley A. Membrane ruffling and signal transduction.Bioessays 1994;16:321–7.

    Article  PubMed  CAS  Google Scholar 

  7. Hall A. Rho GTPases and the actin cytoskeleton.Science1998;279: 509–14.

    Article  PubMed  CAS  Google Scholar 

  8. Ridley AJ. The GTP-binding protein Rho.Int J Biochem Cell Biol 1997;29:1225–9.

    Article  PubMed  CAS  Google Scholar 

  9. Esteve P, Embade N, Perona R et al. Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bc12 dependent pathway.Oncogene1998;17:1855–69.

    Article  PubMed  CAS  Google Scholar 

  10. Hall A. Small GTP-binding proteins and the regulation of the cytoskeleton. Annu Rev Cell Biol1994;10:31–54.

    Article  PubMed  CAS  Google Scholar 

  11. Apenstrom P.Effectors for the Rho GTPases.Curr Opin Cell Biol 1999;11:95–102.

    Google Scholar 

  12. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia.Cell 1995;81:53–62.

    Article  PubMed  CAS  Google Scholar 

  13. Helvie MA, Wilson TE, Roubidoux MA et al. Mammographic appearance of recurrent breast carcinoma in six patients with TRAM flap breast reconstructions.Radiology1998;209:711–5.

    PubMed  CAS  Google Scholar 

  14. Jimenez B, Arenda M, Esteve P et al. Induction of apoptosis in NIH3T3 cells after serum deprivation by overexpression of rho-p21, a GTPase protein of the ras superfamily.Oncogene1995;10:811–6.

    PubMed  CAS  Google Scholar 

  15. van Golen KL, Wu ZF, Qiao XT et al. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype.Cancer Res 2000;60:5832–8.

    PubMed  CAS  Google Scholar 

  16. van Golen KL, Wu ZF, Qiao XT et al. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells.Neoplasia 2000;2:418–25.

    Article  PubMed  CAS  Google Scholar 

  17. van Golen KL, Wu ZF, Bao LW et al. RhoC GTPase induces a motile and invasive phenotype in inflammatory breast cancer.Clin Exp Metastasis1999;17:745 (Abstract #2.7).

    Google Scholar 

  18. Suwa H, Ohshio G, Imamura T et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer1998;77:147–52.

    PubMed  CAS  Google Scholar 

  19. Genda T, Sakamoto M, Ichida T et al. Cell Motility mediated by rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma.Hepatology1999;30: 1027–36.

    Article  PubMed  CAS  Google Scholar 

  20. Clark EA, Golub TR, Lander ES et al.Genomic analysis of metastasis reveals an essential role for RhoC.Nature2000;406:532–5.

    Article  PubMed  CAS  Google Scholar 

  21. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins.Physiol Rev2001;81:153–208.

    PubMed  CAS  Google Scholar 

  22. Danen EH, Sonneveld P, Sonnenberg A et al. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression.J Cell Biol2000;151:1413–22.

    Article  PubMed  CAS  Google Scholar 

  23. Vojtek AB, Cooper JA. Rho family members: Activators of MAP kinase cascades.Cell1995;82:527–9.

    Article  PubMed  CAS  Google Scholar 

  24. Arozarena I, Aaronson DS, Matallanas D et al. The Rho family GTPase Cdc42 regulates the activation of Ras/MAP kinase by the exchange factor Ras-GRF.J Biol Chem2000;275:26441–8.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng HL, Steinway ML, Russell JW et al. GTPases and phosphatidylinositol 3-kinase are critical for insulin-like growth factor-Imediated Schwann cell motility.J Biol Chem2000;275:27197–204.

    PubMed  CAS  Google Scholar 

  26. Harris VK, Coticchia CM, Kagan BL et al. Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction pathways.J Biol Chem2000;275:10802–11.

    Article  PubMed  CAS  Google Scholar 

  27. Sodhi A, Montaner S, Patel V et al. The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogenactivated protein kinase and p38 pathways acting on hypoxiainducible factor 1α.Cancer Res2000;60:4873–80.

    PubMed  CAS  Google Scholar 

  28. Xiong S, Grijalva R, Zhang L et al.Up-regulation of vascular endothelial growth factor in breast cancer cells by the heregulin-beta1-activated p38 signaling pathway enhances endothelial cell migration. Cancer Res2001;61:1727–32.

    PubMed  CAS  Google Scholar 

  29. Parise LV, Lee J, Juliano RL. New aspects of integrin signaling in cancer.Semin Cancer Biol2000;10:407–14.

    Article  PubMed  CAS  Google Scholar 

  30. Downward J. Mechanisms and consequences of activation of protein kinase B/Akt.Curr Opin Cell Biol1998;10:262–7.

    Article  PubMed  CAS  Google Scholar 

  31. Khwaja A, Rodriguez-Viciana P, Wennstrom S et al. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.EMBO J1997; 16:2783–93.

    Article  PubMed  CAS  Google Scholar 

  32. Ilic D, Almeida EA, Schlaepfer DD et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis.J Cell Biol1998;143:547–60.

    Article  PubMed  CAS  Google Scholar 

  33. Tamura M, Gu J, Danen EH et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway.J Biol Chem 1999;274:20693–703.

    Article  PubMed  CAS  Google Scholar 

  34. Ethier SP, Kokeny KE, Ridings JWet al. erbB family receptor expression and growth regulation in a newly isolated human breast cancer cell line.Cancer Res1996;56:899–907.

    PubMed  CAS  Google Scholar 

  35. Ethier SP. Human breast cancer cell lines as models of growth regulation and disease progression.J Mammary Gland Biol Neoplasia1996; 1:111–21.

    Article  PubMed  CAS  Google Scholar 

  36. Sartor CI, Dziubinski ML, Yu CL et al. Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells.Cancer Res1997;57:978–87.

    PubMed  CAS  Google Scholar 

  37. Band V, Zajchowski D, Kulesa V et al. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements.Proc Natl Acad Sci USA1990;87:463–7.

    Article  PubMed  CAS  Google Scholar 

  38. Stasia MJ, Vignais PV. In Abelson JM, Simon MI (eds): Methods in Enzymology.New York: Academic Press1995;324–7.

    Google Scholar 

  39. van Golen KL, Risin S, Staroselsky A et al. Predominance of the metastatic phenotype in hybrids formed by fusion of mouse and human melanoma clones.Clin Exp Metastasis1996;14:95–106.

    Article  PubMed  CAS  Google Scholar 

  40. Albrecht-Buehler G. The phagokinetic tracks of 3T3 cells.Cell1977; 11:395–404.

    Article  PubMed  CAS  Google Scholar 

  41. Aktories K. Rho proteins: targets for bacterial toxins.Trends Microbiol 1997;5:282–8.

    Article  PubMed  CAS  Google Scholar 

  42. Chardin P, Boquet P, Madaule P et al.The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J1989;8(4): 1087–92.

    PubMed  CAS  Google Scholar 

  43. Santner SJ, Dawson PJ, Tait L et al.Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat2001;65:101–10.

    Article  PubMed  CAS  Google Scholar 

  44. Dunn SE, Torres JV, Oh JS et al. Up-regulation of urokinase-type plasminogen activator by insulin-like growth factor-I depends upon phosphatidylinositol-3 kinase and mitogen-activated protein kinase kinase.Cancer Res2001;61:1367–74.

    PubMed  CAS  Google Scholar 

  45. Cuenda A, Alessi DR. Use of kinase inhibitors to dissect signaling pathways.Methods Mol Biol2000;99:161–75.

    PubMed  CAS  Google Scholar 

  46. Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases.Biochim Biophys Acta1998;1436:127–50.

    PubMed  CAS  Google Scholar 

  47. Lopez-Ilasaca M. Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades.Biochem Pharmacol 1998;56:269–77.

    Article  PubMed  CAS  Google Scholar 

  48. Karnam P, Standaert ML, Galloway L et al. Activation and translocation of Rho (and ADP ribosylation factor) by insulin in rat adipocytes. Apparent involvement of phosphatidylinositol 3-kinase.J Biol Chem 1997;272:6136–40.

    Article  PubMed  CAS  Google Scholar 

  49. Amundadottir LT, Leder P. Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes.Oncogene1998; 16:737–46.

    Article  PubMed  CAS  Google Scholar 

  50. Yujiri T, Ware M, Widmann C et al. MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation.Proc Natl Acad Sci USA2000;97:7272–7.

    Article  PubMed  CAS  Google Scholar 

  51. Zeigler ME, Chi Y, Schmidt T et al. Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes.J Cell Physiol1999;180:271–84.

    Article  PubMed  CAS  Google Scholar 

  52. Matsumoto T, Yokote K, Tamura K et al. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Rasdependent pathway that is important for actin reorganization and cell migration.J Biol Chem1999;274:13954–60.

    Article  PubMed  CAS  Google Scholar 

  53. Minden A, Lin A, Claret FX et al. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs.Cell1995;81:1147–57.

    Article  PubMed  CAS  Google Scholar 

  54. Santibanez JF, Iglesias M, Frontelo P et al. Involvement of the Ras/MAPK signaling pathway in the modulation of urokinase production and cellular invasiveness by transforming growth factor-beta(1) in transformed keratinocytes.Biochem Biophys Res Commun2000; 273:521–7.

    Article  PubMed  CAS  Google Scholar 

  55. Royal I, Lamarche-Vane N, Lamorte L et al. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation.Mol Biol Cell2000;11:1709–25.

    PubMed  CAS  Google Scholar 

  56. Coso O, Chiariello M, Yu JC et al. The small GTP-binding proteins proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway.Cell 1995;81:1137–46.

    Article  PubMed  CAS  Google Scholar 

  57. Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway.Genes Dev2001;15:535–53.

    Article  PubMed  CAS  Google Scholar 

  58. Small JV, Kaverina I, Krylyshkina O et al. Cytoskeleton cross-talk during cell motility.FEBS Lett1999;452:96–9.

    Article  PubMed  CAS  Google Scholar 

  59. Bishop AL, Hall A. Rho GTPases and their effector proteins.Biochem J2000;348(2):241–55.

    Article  PubMed  CAS  Google Scholar 

  60. Ridley AJ, Paterson H, Johnston C et al. The small GTP-binding protein rac regulates growth-factor induced membrance ruffling.Cell 1992;70:401–10.

    Article  PubMed  CAS  Google Scholar 

  61. Zondag GCM, Evers EE, ten Klooster JP et al.Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition.J Cell Biol2000;149:775–82.

    Article  PubMed  CAS  Google Scholar 

  62. Rak J, Mitsuhashi Y, Sheehan C et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor upregulation in ras-transformed epithelial cells and fibroblasts.Cancer Res2000;60:490–8.

    PubMed  CAS  Google Scholar 

  63. Warny M, Keates AC, Keates S et al. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis.J Clin Invest2000;105:1147–56.

    Article  PubMed  CAS  Google Scholar 

  64. Hippenstiel S, Soeth S, Kellas B et al. Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells.Blood 2000;95:3044–51.

    PubMed  CAS  Google Scholar 

  65. Rodeck U, Becker D, Herlyn M. Basic fibroblast growth factor in human melanoma.Cancer Cells 1991;3:308–11.

    PubMed  CAS  Google Scholar 

  66. Speirs V, Atkin SL. Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours.Br J Cancer1999;80:898–903.

    Article  PubMed  CAS  Google Scholar 

  67. Inoue K, Slaton JW, Eve BY et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer.Clin Cancer Res 2000;6:2104–19.

    PubMed  CAS  Google Scholar 

  68. Miller LJ, Kurtzman SH, Wang Y et al. Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue.Anticancer Res1998;18:77–81.

    PubMed  CAS  Google Scholar 

  69. Mizuno K, Sone S, Orino E et al. Spontaneous production of interleukin-8 by human lung cancer cells and its augmentation by tumor necrosis factor alpha and interleukin-1 at protein and mRNA levels.Oncology1994;51:467–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia D. Merajver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Golen, K.L., Wei Bao, L., Pan, Q. et al. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19, 301–311 (2002). https://doi.org/10.1023/A:1015518114931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015518114931

Navigation