Skip to main content
Log in

Effect of Polymeric Network Structure on Drug Release from Cross-Linked Poly(Vinyl Alcohol) Micromatrices

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Three types of poly(vinyl alcohol) were cross-linked by glutaraldehyde to form water-swellable materials possessing a three-dimensional, molecular network. Proxyphylline and theophylline were incorporated into the polymer networks during the cross-linking reaction. The firm hydrogels formed were dried and reduced to a particle size of 400–630 µm. The molecular structure of the gels was characterized by equilibrium swelling measurements which allowed the determination of the average distance between two cross-links and, hence, the macromolecular mesh size. The sulfate and glutaraldehyde residues contained in the purified and nonpurified cross-linked polymers were analyzed, and methods for their elimination and inactivation were developed. Drug release from the highly cross-linked gels could be controlled over more than 12 hr, as the diffusion process in these very dense macromolecular networks is rather slow. The extent of branching and entanglement of the polymeric chains appeared to have an important effect. In addition, the release rate was influenced greatly by the amount and, to a lesser extent, by the type of drug in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. Gander. Ph.D. thesis No. 2187, School of Pharmacy, University of Geneva, Geneva, 1986.

  2. N. A. Peppas and B. D. Bar-Howell. In N. A. Peppas (ed.), Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, Fla., 1986, Vol. 1, pp. 27–56.

    Google Scholar 

  3. H. Yasuda, L. D. Ikenberry, and C. E. Lamaze. Makromol. Chem. 125:108–118 (1969).

    Google Scholar 

  4. S. J. Wisniewski, D. E. Gregonis, S. W. Kim, and J. D. Andrade. In J. D. Andrade (ed.), Hydrogels for Medical and Related Applications, ACS Symposium Series 31, ACS, Washington, D.C., 1976, pp. 80–87.

    Google Scholar 

  5. B. K. Davis. Proc. Natl. Acad. Sci. USA 71:3120–3123 (1974).

    Google Scholar 

  6. H. S. Koo and M. S. Jhon. Bull. Korean Chem. Soc. 1:138–143 (1980).

    Google Scholar 

  7. J. M. Wood, D. Attwood, and J. H. Collett. Drug Dev. Ind. Pharm. 9:93–101 (1983).

    Google Scholar 

  8. C. T. Reinhart and N. A. Peppas. J. Membr. Sci. 18:227–239 (1984).

    Google Scholar 

  9. N. A. Peppas and C. T. Reinhart. J. Membr. Sci. 15:275–287 (1983).

    Google Scholar 

  10. W. R. Good. In R. Kostelnik (ed.), Polymeric Delivery Systems, Gordon and Breach, New York, 1976, pp. 139–156.

    Google Scholar 

  11. H. B. Hopfenberg, A. Apicella, and D. E. Saleeby. J. Membr. Sci. 8:273–282 (1981).

    Google Scholar 

  12. S. Gaeta, A. Apicella, and H. B. Hopfenberg. J. Membr. Sci. 12:195–205 (1982).

    Google Scholar 

  13. R. W. Korsmeyer and N. A. Peppas. J. Membr. Sci. 9:211–227 (1981).

    Google Scholar 

  14. N. A. Peppas and N. M. Franson. J. Polym. Sci. Polym. Phys. Ed. 21:983–997 (1983).

    Google Scholar 

  15. R. W. Korsmeyer and N. A. Peppas. J. Contr. Rel. 1:89–98 (1984).

    Google Scholar 

  16. P. I. Lee. Proc. Int. Symp. Contr. Rel. Bioact. Mater. 9:54–60 (1982).

    Google Scholar 

  17. P. I. Lee. Polym. Comm. 24:45–47 (1983).

    Google Scholar 

  18. C. C. R. Robert, P. A. Buri, and N. A. Peppas. J. Contr. Rel. 5:151–157 (1987).

    Google Scholar 

  19. N. A. Peppas. In J. M. Anderson and S. W. Kim (eds.), Recent Advances in Drug Delivery Systems, Plenum Press, New York, 1984, pp. 279–289.

    Google Scholar 

  20. B. Gander, R. Gurny, and E. Doelker. Pharm. Acta Helv. 61:178–184 (1986).

    Google Scholar 

  21. B. Gander, R. Gurny, E. Doelker, and N. A. Peppas. J. Contr. Rel. 5:271–283 (1988).

    Google Scholar 

  22. J. C. Bray and E. W. Merrill. J. Appl. Polym. Sci. 17:3779–3794 (1973).

    Google Scholar 

  23. N. A. Peppas and E. W. Merrill. J. Polym. Sci. Polym. Chem. Ed. 14:459–464 (1976).

    Google Scholar 

  24. B. Kakac and Z. J. Veidelek. Handbuch der photometrischen Analyse organischer Verbindungen, Verlag Chemie, Weinheim, GDR, 1974, Vol. 1, p. 219.

    Google Scholar 

  25. P. L. Ritger and N. A. Peppas. J. Contr. Rel. 5:23–36 (1987).

    Google Scholar 

  26. P. L. Ritger and N. A. Peppas. J. Contr. Rel. 5:37–42 (1987).

    Google Scholar 

  27. R. W. Baker and H. K. Lonsdale. In A. C. Tanquary and R. E. Lacey (eds.), Controlled Release of Biologically Active Agents, Plenum Press, New York, 1974, pp. 15–71.

    Google Scholar 

  28. N. A. Peppas and S. R. Lustig. Ann. N.Y. Acad. Sci. 446:26–41 (1985).

    Google Scholar 

  29. C. Robert, N. A. Peppas, and P. Buri. Proc. Int. Symp. Contr. Rel. Bioact. Mater. 12:130–131 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gander, B., Gurny, R., Doelker, E. et al. Effect of Polymeric Network Structure on Drug Release from Cross-Linked Poly(Vinyl Alcohol) Micromatrices. Pharm Res 6, 578–584 (1989). https://doi.org/10.1023/A:1015949330425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015949330425

Navigation