Skip to main content
Log in

Organic acids and Fe deficiency: a review

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Organic acid concentrations often increase with iron deficiency in different plant parts such as roots, leaves and stem exudates. The review summarises data available on the changes in the concentrations of organic anions in plants with iron deficiency and the effects of these changes in plant metabolism. The paper reviews data available in the literature on the changes in xylem and apoplasmic fluid composition with iron deficiency, both in plants grown in controlled conditions and in the field, and discusses the possible ways of iron complexation and transport in these compartments. The characteristics of the iron reduction and uptake by the iron-deficient leaf mesophyll cells are also discussed, with especial emphasis in the possible roles of organic acids in these processes. Both the possible causes and functions of the organic acid concentration increases in iron-deficient plants are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abadía J, Monge E, Montañés L and Heras L 1984 Iron extraction from plant leaves by Fe(II) chelators. J. Plant Nutr. 7, 777-784.

    Google Scholar 

  • Alhendawi R A, Römheld V, Kirkby E A and Marschner H 1997 In-fluence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum and maize. J. Plant Nutr. 20, 1731-1753.

    Google Scholar 

  • Andaluz S, López-Millán A F, Peleato M L, Abadía J and Abadía A 2001 Phosphoenol pyruvate carboxylase: A key enzyme in irondeficient sugar beet roots. Plant and Soil, this issue.

  • Bacon J S D, De Kock P C and Palmer M J 1959 Aconitase levels in the leaves of iron-deficient mustard plants. Biochem. J. 80, 64-70.

    Google Scholar 

  • Bedri A A, Wallace A and Rhoads W A 1960 Assimilation of bicarbonate by roots of different plant species. Soil Sci. 89, 257-263.

    Google Scholar 

  • Bialczyk J and Lechowski L 1992 Absorption of HCO -3 by roots and its effect on carbon metabolism of tomato. J. Plant Nutr. 15, 293-312.

    Google Scholar 

  • Bialczyk J and Lechowski L 1995 Chemical composition of xylem sap of tomato grown on bicarbonate containing medium. J. Plant Nutr. 18, 2005-2021.

    Google Scholar 

  • Bienfait H F 1988 Mechanisms in Fe-efficiency reactions of higher plants. J. Plant Nutr. 11, 605-629.

    Google Scholar 

  • Bienfait H F 1989 Prevention of stress in iron metabolism of plants. Acta Bot. Neerl. 38, 105-129.

    Google Scholar 

  • Bienfait H F 1996 Is there a metabolic link between H+ excretion and ferric reduction by roots of Fe-deficient plants-A viewpoint. J. Plant Nutr. 19, 1211-1222.

    Google Scholar 

  • Bienfait H F, Lubberding H J, Heutink P, Lindner L, Visser J, Kaptein R and Dijkstra K 1989 Rhizosphere acidification by iron deficient bean plants: the role of trace amounts of divalent metal ions. A study on roots of intact plants with the use of 11C and 31P-NMR. Plant Physiol. 90, 359-364.

    Google Scholar 

  • Bienfait F H and Scheffers M R 1992 Some properties of ferric citrate relevant to the iron nutrition of plants. Plant Soil 143, 141-144.

    Google Scholar 

  • Bindra A S 1980 Iron chlorosis in horticultural and field crops. Annu. Rev. Plant Sci. II, 221-312.

    Google Scholar 

  • Brown J C 1966 Fe and Ca uptake as related to root-sap and stemexudate citrate in soybeans. Physiol. Plant. 19, 968-976.

    Google Scholar 

  • Brown J C and Ambler J E 1970 Further characterization of iron uptake in two genotypes of corn. Soil Sci. Soc. Amer. Proc. 34, 249-252.

    Google Scholar 

  • Brown J C and Chaney R L 1971 Effect of iron in the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiol. 47, 836-840.

    Google Scholar 

  • Brown J C and Jolley V D 1986 An evaluation of concepts related to iron deficiency chlorosis. J. Plant Nutr. 9, 175-182.

    Google Scholar 

  • Brown J C and Tiffin L O 1965 Iron stress as related to the iron and citrate ocurring in stem exudate. Plant Physiol. 40, 395-400.

    Google Scholar 

  • Brown J C, Chaney R L and Ambler J E 1971 A new tomato mutant inefficient in the transport of iron. Physiol. Plant. 25, 48-53.

    Google Scholar 

  • Brüggemann W, Maaskantel K and Moog P 1993 Iron uptake by leaf mesophyll cells-the role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 151-155.

    Google Scholar 

  • Bughio N, Takahashi M, Yoshimura E, Nishizawa N K and Mori S 1997a Light-dependent iron transporter into isolated barley chloroplasts. Plant Cell Physiol. 38, 101-105.

    Google Scholar 

  • Bughio N, Takahashi M, Yoshimura E, Nishizawa N K and Mori S 1997b Characteristics of light regulated iron transport system in barley chloroplasts. Soil Sci. Plant Nutr. 43, 959-963.

    Google Scholar 

  • Cataldo D A, McFadden K M, Garland T R and Wildung R E 1988 Organic constituents and complexation of nickel (II), iron (III), cadmium (II), and plutonium (IV) in soybean xylem exudates. Plant Physiol. 86, 734-739.

    Google Scholar 

  • Chaney R L and Bell P F 1987 Complexity of iron nutrition: lessons for plant-soil interaction research. J. Plant Nutr. 10, 963-994.

    Google Scholar 

  • Chollet R, Vidal J and O'Leary M H 1996 Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 273-298.

    Google Scholar 

  • Clark C J, Holland P T and Smith G S 1986 Chemical composition of bleeding xylem sap from kiwifruit vines. Ann. Bot. 58, 353-362.

    Google Scholar 

  • Clark R B, Tiffin L O and Brown J C 1973 Organic acids and iron translocation in maize genotypes. Plant Physiol. 52, 147-150.

    Google Scholar 

  • Davies D D 1973 Control of and by pH. Symp. Soc. Exp. Biol. 27, 513-529.

    Google Scholar 

  • de la Guardia M D and Alcántara E 1996 Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron deficiency and leaf age. J. Exp. Bot. 47, 669-675.

    Google Scholar 

  • De Kock P C 1981 Iron nutrition under conditions of stress. J. Plant Nutr. 3, 513-521.

    Google Scholar 

  • De Kock P C and Morrison R I 1958 The metabolism of chlorotic leaves. 2. Organic acids. Biochem. J. 70, 272-277.

    Google Scholar 

  • de Nisi P and Zocchi G 2000 Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. J. Exp. Bot. 51, 1903-1909.

    Google Scholar 

  • de Vos C R, Lubberding H J and Bienfait H F 1986 Rhizosphere acidification as a response to iron deficiency in bean plants. Plant Physiol. 81, 842-846.

    Google Scholar 

  • Espen L, Dell'Orto M, de Nisi P and Zocchi G 2000 Metabolic responses in cucumber (Cucumis sativus L.) roots under Fedeficiency: a 31P-nuclear magnetic resonance in-vivo study. Planta 210, 985-992.

    Google Scholar 

  • Fournier J M, Alcantara E and de la Guardia M D 1992 Organic acid accumulation in roots of two sunflower lines with a different response to iron deficiency. J. Plant Nutr. 15, 1747-1755.

    Google Scholar 

  • Gilbert G A, Vance C P and Allan D L 1998 Regulation of white lupin root metabolism by phosphorus availability. In Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Prganismic, and Ecosystem Processes, Eds. Lynch J P, Deikman J. American Society of Plant Physiologists, pp 157-167.

  • Gilfillan I M and Jones W W 1968 Effect of iron and manganese deficiency on the chlorophyll, amino acid and organic acid status of leaves of macadamia. Proc. Am. Hort. Soc. 68, 210-214.

    Google Scholar 

  • González-Vallejo E B, González-Reyes J A, Abadía A, López-Millán A F, Yunta F, Lucena J J and Abadía J 1999 Reduction of ferric chelates by leaf plasma membrane preparations from Fe-deficient and Fe-sufficient sugar beet. Aust. J. Plant Physiol. 26, 601-611.

    Google Scholar 

  • González-Vallejo E B, Morales F, Cistué L, Abadía A and Abadía J 2000 Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiol. 122, 337-344.

    Google Scholar 

  • González-Vallejo E B, Susín S, Abadía A and Abadía J 1998 Changes in sugar beet leaf plasma membrane Fe(III)-chelate reductase activities mediated by Fe-deficiency, assay buffer composition, anaerobiosis and the presence of flavins. Protoplasma 205, 163-168.

    Google Scholar 

  • Grünewald S 1996 Eisenchelatreduktion durch mesophyllzellen. Diploma Thesis. Heinrich-Heine Universität Düsseldorf.

  • Habison A, Kubicek C P and Röhr M 1979 Phosphofructokinase as a regulatory enzyme in citric acid producting Aspergillus niger. FEMS Microbiol. Lett. 5, 39-42.

    Google Scholar 

  • Herbik A, Giritch A, Horstmann C, Becker R, Balzer H J, Bäumlein H and Stephan U W 1996 Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol. 111, 533-540.

    Google Scholar 

  • Huffaker R C, Hall D O, Shannon L M, Wallace A and Rhoads W A 1959 Effects of iron and chelating agents on dark carboxylation reactions in plant homogenates. Plant Physiol. 34, 446-449.

    Google Scholar 

  • Iljin W S 1943 Metabolism of the grapevine during lime chlorosis. Gartenbauwiss. 17, 328-381.

    Google Scholar 

  • Iljin W S 1944 Salts and organic acids in relation to calciophiles. Flora 37, 265-299.

    Google Scholar 

  • Iljin W S 1951 Metabolism of plants affected with lime induced chlorosis. II Organic acids and carbohydrates. Plant Soil 4, 339-351.

    Google Scholar 

  • Jones D L 1998 Organic acids in the rhizosphere-a critical review. Plant Soil 205, 25-44.

    Google Scholar 

  • Kosegarten H U, Hoffman B and Mengel K 1999 Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. 121, 1069-1079.

    Google Scholar 

  • Kosegarten H, Hoffman B and Mengel K 2000 Apoplastic pH regulates Fe3+ reduction in young sunflower leaves. These proceedings.

  • Landsberg E C 1981 Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono and dicotyledonous plant species. J. Plant Nutr. 3, 579-591.

    Google Scholar 

  • Landsberg E C 1984 Regulation of iron-stress-response by wholeplant activity. J. Plant Nutr. 7, 609-621.

    Google Scholar 

  • Landsberg E C 1986 Function of rhizodermal transfer cells in the Fe stress response mechanisms of Capsicum annuum L. Plant Physiol. 82, 511-517.

    Google Scholar 

  • Landsberg E C 1994 Transfer cell formation in sugar beet roots induced by latent Fe deficiency. Plant Soil 165, 197-205.

    Google Scholar 

  • Larbi A 1999 Effêt de la chlorose ferrique sur la reduction de fer par le mesophyle de feuilles de la betterave a sucre et du pêcher. Master Thesis. International Center for Advanced Mediterranean Studies-Instituto Agronómico Mediterráneo de Zaragoza.

  • Larbi A, Morales F, López-Millán A F, Gogorcena Y, Abadía A, Moog P R and Abadía J 2001 Reduction of Fe(III)-chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency. Plant Cell Physiol. 42, 94-105.

    Google Scholar 

  • Lingle J C, Tiffin L O and Brown J C 1963 Iron uptake-transport of soybeans as influenced by other cations. Plant Physiol. 38, 71-76.

    Google Scholar 

  • López-Millán A F, Morales F, Andaluz A, Gogorcena Y, Abadía A, de las Rivas J and Abadía J 2000a Protective mechanisms in roots of iron deficient sugar beet: changes in carbon assimilation and oxygen use. Plant Physiol. 124, 885-897.

    Google Scholar 

  • López-Millán A F, Morales F, Abadía A and Abadía J 2000b Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiol. 124, 873-884.

    Google Scholar 

  • López-Millán A F, Morales F, Gogorcena Y, Abadía A and Abadía J 2001a Iron resupply-mediated deactivation of root responses to iron deficiency in sugar beet. Aust. J. Plant Physiol. 28, 171-180.

    Google Scholar 

  • López-Millán A F, Morales F, Abadía A and Abadía J 2001b Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris L.) leaves. Physiol. Plant., 112, 31-38.

    Google Scholar 

  • López-Millán A F, Morales F, Abadía A and Abadía J 2001c Changes induced by iron deficiency in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J. Exp. Bot., in press.

  • López-Millán A F, Morales F, Gogorcena Y, Abadía A and Abadía J 2001d Changes induced by iron deficiency in the organic acid metabolism of tomato (Lycopersicon esculentum Mill.). Submitted for publication.

  • Lubberding H J, de Graaf F H J M and Bienfait H F 1988 Ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris: source of reducing equivalents. Biochem. Physiol. Pflanzen 183, 271-276.

    Google Scholar 

  • Maas F M, van der Wetering D A M, van Beusichem M L and Bienfait H F 1988 Characterization of phloem iron and its possible role in the regulation of the Fe-efficiency reactions. Plant Physiol. 87, 167-171.

    Google Scholar 

  • McGeorge W T 1949 Lime-induced chlorosis: relation between active iron and citric and oxalic acids. Soil Sci. 68, 381-390.

    Google Scholar 

  • Mengel K 1994 Iron availability in plant tissues-Iron chlorosis on calcareous soils. Plant Soil 165, 275-283.

    Google Scholar 

  • Miller G W, Shigematsu A, Welkie G W, Motoji N and Szlek M 1990 Potassium effect on iron stress in tomato. II The effects on root CO2-fixation and organic acid formation. J. Plant Nutr. 13, 1355-1370.

    Google Scholar 

  • Moog P R and Brüggemann W 1995 Iron reductase systems on the plant plasma membrane. A review. Plant Soil 165, 241-260.

    Google Scholar 

  • Mullins G, Sommers L and Housley T 1986 Metal speciation in xylem and phloem exudates. Plant Soil 96, 377-391.

    Google Scholar 

  • Nikolic M and Römheld V 1999 Mechanism of Fe uptake by the leaf symplast: Is Fe inactivation en leaf a cause of Fe deficiency chlorosis? Plant Soil 215, 229-237.

    Google Scholar 

  • Nikolic M and Römheld V 2000 Does high bicarbonate supply to roots change availability of Fe in the leaf apoplast? These proceedings.

  • Ohwaki Y and Sugahara K 1997 Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil 189, 49-55.

    Google Scholar 

  • Palmer M J, De Kock P C and Bacon J S D 1963 Changes in concentration of malic acid, citric acid, Ca and K in the leaves during the growth of normal and iron deficient mustard plants. J. Biochem. 86, 484-493.

    Google Scholar 

  • Pich A and Scholz G 1993 The relationship between the activity of various iron-containing and iron-free enzymes and the presence of nicotianamine in tomato seedlings. Physiol. Plant. 88, 172-178.

    Google Scholar 

  • Pich A, Scholz G and Stephan U W 1994 Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes-Nicotianamine as possible copper translocator. Plant Soil 165, 189-196.

    Google Scholar 

  • Pissaloux A, Morard P and Bertoni G 1995 Alkalinity-bicarbonatecalcium effects on iron chlorosis in white lupine in soilless culture. In Iron Nutrition in Soils and Plants. Developments in Plant and Soils Sciences, Ed. J Abadía, Vol. 59. pp 127-134. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Rabotti G, de Nisi P and Zocchi G 1995 Metabolic implications in the biochemical responses to iron deficiency in cucumber (Cucumis sativus L.) roots. Plant Physiol. 107, 1195-1199.

    Google Scholar 

  • Rhoads W A and Wallace A 1960 Possible involvement of dark fixation of CO2 in lime-induced chlorosis. Soil Sci. 89, 248-256.

    Google Scholar 

  • Rhoads W A, Wallace A and Romney E M 1959 Lime-induced chlorosis studied physiology of disorder investigated to learn role of malonic acid and possibility of a block in organic acid metabolism. Calif. Agric. 13, 6-15.

    Google Scholar 

  • Rogers C H and Shive J W 1932 Factors affecting the distribution of iron in plants. Plant Physiol. 7, 227-252.

    Google Scholar 

  • Rombolà A D 1998 Aspetti fisiologici e biochimici della nutrizione ferrica in actinidia (A. deliciosa). Ph.D. Thesis, Dipartimento di Colture Arboree. Universitá degli Studi di Bologna.

  • Rombolà A D, Brüggemann W, Tagliavini M, Marangoni B and Moog P R 2000a Iron source affects Fe reduction and regreening of kiwifruit (Actinidia deliciosa) leaves. J Plant Nutr. 23, 1751-1765.

    Google Scholar 

  • Rombolà A D, Brüggemann W, López-Millán A F, Tagliavini M, Marangoni B and Moog P R 2000b Biochemical responses of tolerance to Fe deficiency in kiwifruit (Actinidia deliciosa) plants. (Submitted).

  • Sadka A, Dahan E,Marsh K and Varghese G 2000 Iron homeostasis and citric acid metabolism in Citrus fruits. These proceedings.

  • Santi S, De Nisi P, Agnolon F, Varanini Z, Pinton R and Zocchi G 2000 Phosphoenolpyruvate carboxylase activity in cucumber (Cucumis sativus L.) roots under iron deficiency. These proceedings.

  • Schander H 1939 The dependence upon external factors of chlorosis of Lupinus luteus seedlings in sand cultures. Z. Bodenk. Pflanzenernähr. 12, 71-84.

    Google Scholar 

  • Schander H 1943a The differences and similarities of chlorosis in lupines and wood growths. Gartenbauwiss. 17, 304-309.

    Google Scholar 

  • Schander H 1943b The problem of lime chlorosis in plants. Jahrb. Wiss. Bot. 91, 169-185.

    Google Scholar 

  • Scheffer F, Kickuth R and Lorenz H 1965 Ñber saure organische verbindungen in sproß, wurzel und im steril gehaltenen wurzelraum von mais (ein beitrag zur frage der wurzelausscheidungen). Z. Pflanzenernähr. Bodenk. 110, 201-210.

    Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141, 1-26.

    Google Scholar 

  • Schmidt W and Bartels M 1998 Orientation of NADH-linked ferric chelate (turbo) reductase in plasma membranes from roots of Plantago lanceolata. Protoplasma 203, 186-193.

    Google Scholar 

  • Schmidt A and Buckhout T J 1997 The response of tomato roots (Lycopersicon esculentum Mill.) to iron deficiency stress: alterations in the pattern of protein synthesis. J. Exp. Bot. 48, 1909-1918.

    Google Scholar 

  • Sijmons P C and Bienfait H F 1983 Source of electrons for extracellular Fe(III) reduction in iron-deficient bean roots. Physiol. Plant. 59, 409-415.

    Google Scholar 

  • Spiro T, Pape L and Saltman P 1967a The hydrolitic polymerization of ferric citrate. I. The chemistry of the polymer. J. Am. Chem. Soc. 89, 5555-5559.

    Google Scholar 

  • Spiro T, Bates G and Saltman P 1967b The hydrolytic polymerization of ferric citrate. II. The influence of excess citrate. J. Am. Chem. Soc. 89, 5559-5562.

    Google Scholar 

  • Ström L 1997 Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants. Oikos 80, 459-466.

    Google Scholar 

  • Su Y L and Miller G W 1960 Chlorosis in higher plants as related to organic acid content. Plant Physiol. 36, 415-420.

    Google Scholar 

  • Sun X P, Wang S Y, Tong Y A, Korcak R F and Faust M 1987 Metabolic changes in iron-deficient apple seedlings. J. Plant Nutr. 10, 1021-1030.

    Google Scholar 

  • Terry N 1979 The use of mineral nutrient stress in the study of limiting factors in photosynthesis. In Photosynthesis and Plant Development, Eds R Marcelle, H Clijsters, M Van Poucke. pp 151-160. Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Terry N 1980 Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol. 65, 114-120.

    Google Scholar 

  • Thoiron S and Briat J F 1999 Differential expression of maize sugar responsive genes in response to iron deficiency. Plant Physiol. Biochem. 37, 759-766.

    Google Scholar 

  • Tiffin L O 1966a Iron translocation I. Plant culture, exudate sampling, iron-citrate analysis. Plant Physiol. 41, 510-514.

    Google Scholar 

  • Tiffin L O 1966b Iron translocation. II Citrate/iron ratios in plant stem exudates. Plant Physiol. 41, 515-518.

    Google Scholar 

  • Tiffin L O 1967 Translocation of manganese, iron, cobalt and zinc in tomato. Plant Physiol. 42, 1427-1432.

    Google Scholar 

  • Tiffin L O 1970 Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol. 45, 280-283.

    Google Scholar 

  • Tiffin L O 1971 Effect of iron on the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiol. 47, 836-840.

    Google Scholar 

  • Tiffin L O and Brown J C 1961 Iron chelates in soybean exudate. Science 135, 311-313.

    Google Scholar 

  • Tyler G and Ström L 1995 Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. Ann. Bot. 75, 75-88.

    Google Scholar 

  • Van Beusichem M L, Nelemans J A and Bienfait H F 1988 Interrelationships between trans-plasma membrane electron/proton transfer stoichiometry, organic acid metabolism and nitrate reduction in dwarf bean (Phaseolus vulgaris). Plant Physiol. 87, 269-273.

    Google Scholar 

  • Van Egmond F and Atkas M 1977 Iron-nutritional aspects of the ionic balance of plants. Plant Soil 48, 685-703.

    Google Scholar 

  • Venkat Raju K, Marschner H and Römheld V 1972 Effect of iron nutritional status on ion uptake, substrate pH and production and release of organic acids and riboflavin by sunflower plants. Z. Pflanzenernähr. Bodenk. 3, 177-189.

    Google Scholar 

  • Welkie G W and Miller G W (1993) Plant iron uptake physiology by nonsiderophore systems. In Iron Chelation in Plants and Soil Microorganisms, Eds. L L Barton, B C Hemming. pp 345-369. Academic Press, San Diego, USA.

    Google Scholar 

  • White M C, Decker A M and Chaney R L 1981a Metal complexation in xylem fluid. I. Chemical composition of tomato and soybean stem exudate. Plant Physiol. 67, 292-300.

    Google Scholar 

  • White M C, Baker F D, Chaney R L and Decker A M 1981b Metal complexation in xylem fluid. II. Theoretical equilibrium model and computational computer program. Plant Physiol. 67, 301-310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Abadía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abadía, J., López-Millán, AF., Rombolà, A. et al. Organic acids and Fe deficiency: a review. Plant and Soil 241, 75–86 (2002). https://doi.org/10.1023/A:1016093317898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016093317898

Navigation