Skip to main content
Log in

Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Adaptive mutations are spontaneous mutations that occur in microorganisms during periods of prolonged stress in non-dividing or very slowly dividing populations and that are specific to the environmental challenge that causes that stress. This article reviews the literature on adaptive mutagenesis since 1993. The evidence that adaptive mutagenesis is both real and general is considered. The most widely used system for studying adaptive mutagenesis, reversion of an F′-borne lacI33 allele, is shown to be a special case that reflects more about F-plasmid biology than about adaptive mutagenesis in general. New evidence demonstrating that adaptive mutagenesis is, indeed, specific is discussed. A variety of genes whose products affect adaptive mutagenesis are discussed. A model to explain that specificity and new evidence in support of that model are considered, as are potential roles of adaptive mutagenesis in evolution and practical aspects of adaptive mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boe, L., 1990. Mechanisms for induction of adaptive mutations in Escherichia coli. Molec. Microbiol. 4: 597-601.

    CAS  Google Scholar 

  • Bridges, B.A., 1993. Spontaneous mutation in stationaryphase Escherichia coli WP2 carrying various DNA repair alleles. Mutat.Res. 302: 173-176.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, B.A., 1994a. Spontaneous mutation: Some conceptual difficulties. Mutat. 304: 13-17.

    CAS  Google Scholar 

  • Bridges, B.A., 1994b. Starvationassociated mutation in Escherichia coli: A spontaneous lesion hypothesis for ‘directed’ mutation. Mutat. 307: 149-156.

    CAS  Google Scholar 

  • Bridges, B.A., 1995. mutY ‘directs’ mutation? Nature 375: 741.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, B.A., 1996. Elevated mutation rate in mutT bacteria during starvation: Evidence for DNA turnover? J. Bacteriol. 178: 2709-2711.

    PubMed  CAS  Google Scholar 

  • Bridges, B.A., J. Cole, J. Favor, B.W. Glickman, H. Mohrenweiser, K. Sankaranarayanan & T.R. Skopek, 1994. Spontaneous mutation and its place in risk assessment for chemical mutagens. Report of an ICPEMC Committee. Mutat. 304: 3-11.

    CAS  Google Scholar 

  • Bridges, B.A., M. Sekiguchi & T. Tajiri, 1996. Effect of mutY and mutM/fpg1 mutations on starvationassociated mutation in Escherichia coli: Implications for the role of 7,8-dihydro-8-oxoguanine. Mol.Gen.Genet. 251: 352-357.

    PubMed  CAS  Google Scholar 

  • Cairns, J., J. Overbaugh & S. Miller, 1988. The origin of mutants. Nature (London) 335: 142-145.

    Article  PubMed  CAS  Google Scholar 

  • Cairns, J. & P.L. Foster, 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128: 695-701.

    PubMed  CAS  Google Scholar 

  • Colby, C. & S.M. Williams, 1995. The effect of adaptivemutagenesis on genetic variation at a linked neutral locus. Genetics 140: 1129-1136.

    PubMed  CAS  Google Scholar 

  • Coulondre, C. & J.H. Miller, 1977. Genetic studies of the lac repressor. IV.Mutagenic specificity in the lacI gene of Escherichia coli. J. Mol. Biol. 117: 577-606.

    Article  PubMed  CAS  Google Scholar 

  • Everett, M.J., Y.-F. Jin, V. Ricci & L.J.V. Piddock, 1996. Contribution of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli isolated from humans and animals. Antimicrob. Agents Chemother. 40: 2380-2386.

    PubMed  CAS  Google Scholar 

  • Fitch, W.M., 1982. The challenges to Darwinism since the last centennial and the impact of molecular studies. Evolution 36: 1133-1143.

    Article  Google Scholar 

  • Foster, P.L., 1992. Directed mutation: Between unicorns and goats. J. Bacteriol. 174: 1711-1716.

    PubMed  CAS  Google Scholar 

  • Foster, P.L., 1993. Adaptive mutation: The uses of adversity. Annu.Rev.Microbiol. 47: 467-504.

    Article  PubMed  CAS  Google Scholar 

  • Foster, P.L., 1994. Population dynamics of a Lacstrain Of Escherichia coli during selection for lactose utilization. Genetics 138: 253-261.

    PubMed  CAS  Google Scholar 

  • Foster, P.L., 1997. Nonadaptive mutations occur on the F episome during adaptive mutation conditions in Escherichia coli. J. Bacteriol. 179: 1550-1554.

    PubMed  CAS  Google Scholar 

  • Foster, P.L. & J. Cairns, 1992. Mechanisms of directed mutation. Genetics 131: 783-789.

    PubMed  CAS  Google Scholar 

  • Foster, P.L. & J.M. Trimarchi, 1994. Adaptive reversion of a frameshift mutations in Escherichia coli by simple base deletions in homopolymeric runs. Science 265: 407-409.

    PubMed  CAS  Google Scholar 

  • Foster, P.L., G. Gudmundsson, J.M. Trimarchi, H. Cai & M.F. Goodman, 1995. Proofreadingdefective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 7951-7955.

    Article  PubMed  CAS  Google Scholar 

  • Foster, P.L. & J.M. Trimarchi, 1995a. Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc. Nat. Acad. Sci USA 92: 5487-5490.

    Article  PubMed  CAS  Google Scholar 

  • Foster, P.L. & J.M. Trimarchi, 1995b. Conjugation is not required for adaptive reversion of an episomal frameshift mutation in Escherichia coli. J.Bacteriol. 177: 6670-6671.

    PubMed  CAS  Google Scholar 

  • Foster, P.L., J.M. Trimarchi & R.A. Maurer, 1996. Two enzymes, both of which process recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli. Genetics 142: 25-37.

    PubMed  CAS  Google Scholar 

  • Friedberg, E.C., G.C. Walker & W. Siede, 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.

    Google Scholar 

  • Galitski, T.G. & J.R. Roth, 1995. Evidence the F plasmid transfer replication underlies apparent adaptive mutation. Science 268: 421-423.

    PubMed  CAS  Google Scholar 

  • Galitski, T. & J.R. Roth, 1996. A search for a general phenomenon of adaptive mutability. Genetics 143: 645-659.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1988 Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887-897.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1989. Selection, Adaptation, and Bacterial Operons. Genome 31: 265-271.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1990. Spontaneous point mutations that occur more often when they are advantageous than when they are neutral. Genetics 126: 5-16.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1991a. Adaptive Evolution that Requires Multiple Spontaneous Mutations: Mutations InvolvingBase Substitutions. Proc. Nat. Acad. Sci. USA 88: 5882-5886.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1991b. Spectrum of mutations that occur under selective and nonselective conditions in E. coli. Genetica 84: 73-76.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1992. Selectioninduced mutations occur in yeast. Proc. Nat. Acad. Sci. USA 89: 4300-4303.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1993. The role of singlemutant intermediates in the generation of trpAB double revertants during prolonged selection. J. Bacteriol. 175: 6411-6414.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1994a. On alternatives to selectioninduced mutations in the Bgl operon of Escherichia coli. Mol. Biol. Evol. 11: 159-168.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1994b. Selection or Mutation: which, if either, comes first? FEMS Microbiol. Lett. 117: 237-242.

    Article  CAS  Google Scholar 

  • Hall, B.G., 1995a. Adaptive mutations in E. coli as a model for the Multiplemutational origins of tumors. Proc. Nat. Acad. Sci. USA 92: 5669-5673.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1995b. Evolutionary potential of the ebgA gene. Mol. Biol. Evol. 12: 514-517.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., 1995c. Genetics of Selectioninduced mutations: I. uvrA, uvrB, uvrC and uvrD are selectioninduced specific mutator loci. J. Mol. Evol. 40: 86-93.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B.G., 1997. On the specificity of adaptive mutations. Genetics 145: 39-44.

    PubMed  CAS  Google Scholar 

  • Harris, R.H., S. Longerich & S.M. Rosenberg, 1994. Recombination in adaptive mutation. Science 264: 258-260.

    PubMed  CAS  Google Scholar 

  • Harris, R.S., H.J. Bull & S.M. Rosenberg, 1997. A direct role for DNA polymerase in adaptive reversion of a frameshift mutation in Escherichia coli. Mutat. Res. 375: 19-24.

    PubMed  CAS  Google Scholar 

  • Harris, R.S., K.J. Ross & S.M. Rosenberg, 1996. Opposing roles of the Holliday Junction processing systems of Escherichia coli in recombinationdependent adaptive mutation. Genetics 142: 681-691.

    PubMed  CAS  Google Scholar 

  • Hollstein, M., D. Sidransky, B. Vogelstein & C.C. Harris, 1991. p53 mutations in human cancers. Science 253: 49-53.

    PubMed  CAS  Google Scholar 

  • Jayaraman, R., 1992. Cairnsian mutagenesis in Escherichia coli: Genetic evidence for two pathways regulated by mutS and mutL genes. J. Genet. 71: 23-41.

    Google Scholar 

  • Jayaraman, R., 1995. Leakiness of geneticmarkers and susceptibility to postplating mutagenesis in Escherichia coli. J. Genet. 74: 85-97.

    Article  CAS  Google Scholar 

  • Kasak, L., R. Hõrak & M. Kivisaar, 1997. Promotorcreating Mutations in Psuedomonas putida: A model system for the study of mutation in starving bacteria. Proc. Nat. Acad. Sci. USA 94: 3134-3139.

    Article  PubMed  CAS  Google Scholar 

  • Kuzminov, A., 1995. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16: 373-384.

    PubMed  CAS  Google Scholar 

  • Lederberg, J. & E.M. Lederberg, 1952. Replica plating and the indirect selection of bacteria mutants. J. Bacteriol. 63: 399-406.

    PubMed  CAS  Google Scholar 

  • Loeb, L.A., 1991. Mutator phenotype may be required formultistage carcinogenesis. Cancer Res. 51: 3075-3079.

    PubMed  CAS  Google Scholar 

  • Longerich, S., A.M. Galloway, R.S. Harris, C. Wong & S.M. Rosenberg, 1995. Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc. Natl. Acad. Sci. USA 92: 12017-12020.

    Article  PubMed  CAS  Google Scholar 

  • Luria, S.E. & M. Delbrück, 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491-511.

    CAS  PubMed  Google Scholar 

  • Mittler, J.E. & R.E. Lenski, 1992. Experimental evidence for an alternative to directed mutation in the bgl operon. Nature 356: 446-448.

    Article  PubMed  CAS  Google Scholar 

  • Prival, M.J. & T.A. Cebula, 1996. Adaptive mutation and slowgrowing revertants of an Escherichia coli lacZ amber mutant. Genetics 144: 1337-1341.

    PubMed  CAS  Google Scholar 

  • Radicella, J.P., P.U. Park & M.S. Fox, 1995. Adaptive mutation in Escherichia coli: A role for conjugation. Science 268: 418-420.

    PubMed  CAS  Google Scholar 

  • Rebeck, G.W. & L. Samson, 1991. Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the O6Methylguanine DNA repair methyltransferase. J. Bacteriol. 173: 2068-2076.

    PubMed  CAS  Google Scholar 

  • Reisenfeld, C., M. Everett, L.J.V. Piddock & B.G. Hall, 1997. Adaptive Mutations Produce Resistance to Ciprofloxacin. Antimicrob. Agents Chemother. In press.

  • Rosenberg, S.M., 1994. In pursuit of a molecular mechanism for adaptive mutations. Genome 37: 893-899.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S.M., R.S. Harris, S. Longerich & A.M. Galloway, 1996. Recombinationdependent mutation in non-dividing cells. Mutat.Res. 350: 69-76.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S.M., R.S. Harris & J. Torkelson, 1995. Molecular handles on adaptive mutation. Mol. Microbiol. 18: 185-189.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S.M., S. Longerich, P. Gee & R.S. Harris, 1994. Adaptive mutation by deletions in small mononucleotide repeats. Science 265: 405-407.

    PubMed  CAS  Google Scholar 

  • Slater, J.H., A.J. Weightman & B.G. Hall, 1985. Dehalogenase genes of Pseudomonas putida PP3 on chromosomally located transposable elements. Mol. Biol. & Evol. 2: 557-567.

    CAS  Google Scholar 

  • Stahl, F.W., 1988. A Unicorn in the garden? Nature (London) 335: 112-113.

    Article  PubMed  CAS  Google Scholar 

  • Steele, D.F. & S. JinksRobertson, 1992. An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics 132: 9-21.

    PubMed  CAS  Google Scholar 

  • Stein, W.D., 1991. Analysis of cancer incidence data on the basis of multistage and clonal growth models. Adv. Cancer Res. 56: 161-213.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, B.S., 1992. The origin of point mutations in human tumor cells. Cancer Res. 52: 249-253.

    PubMed  CAS  Google Scholar 

  • Torkelson, J., R.S. Harris, M.-J. Lobarrdo, J. Nagerdran, C. Thulin & S.M. Rosenberg, 1997. Genomewide hypermutation in a subpopulation of stationaryphase cells underlies recombinationdependent adaptive mutation. EMBO J. 16: 3303-3311.

    Article  PubMed  CAS  Google Scholar 

  • Van Houten, B., 1990. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 54: 18-51.

    PubMed  CAS  Google Scholar 

  • Van Houten, B. & A. Snowden, 1993. Mechanism of action of the Escherichia coli UvrABC nuclease: Clues to the damage recognition problem. BioEssays 15: 51-59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B.G. Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations. Genetica 102, 109–125 (1998). https://doi.org/10.1023/A:1017015815643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017015815643

Navigation