Skip to main content
Log in

Genome wide oscillations in expression – Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A reanalysis of expression arrays in yeast cells synchronized by alpha factor blockade or through the use of temperature sensitive mutants uncovered a genome wide pattern of oscillations in mRNA concentrations. Using wavelet decomposition as a signal processing technique and enhancement strategies borrowed from image processing, noise and trends in the Stanford yeast cell cycle data were partitioned away from time series profiles to uncover genome-wide oscillations in expression. These oscillations which were typically of cell cycle or half cell cycle duration, 40 and 80 minutes in the Stanford data set suggest that there are large-scale temporal structures and high frequency oscillations in mRNA levels through the cell cycle. Wavelet decomposition, which acts like a band pass filter bank, was used to determine where most of the power appeared in the decomposition. The ∼40-min oscillation is mirrored in continuous chemostat cultures. In these cultures, metabolic synchrony involving an unknown proportion of the transcriptome can be monitored by measurement of oxygen consumption and can be sustained for weeks. These 40-min oscillations are stable and precise with coefficients of variation less than 1% for both period and amplitude. The hypothesis that high and low amplitude oscillations are a ubiquitous property of the genetic regulatory circuitry was supported by the observation of period doubling bifurcations in the distribution of population doubling times in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicholas G & Prigogine I (1977) In: Self-Organization in Non-Equilibrium Systems, Wiley, New York

    Google Scholar 

  2. Kauffman SA (1995) In At Home in the Universe, Oxford University Press, New York

    Google Scholar 

  3. Mitchison JM (1971) In The Biology of the Cell Cycle, Cambridge University Press, London

    Google Scholar 

  4. Klevecz RR, Kauffman SA & Shymko RM (1984) Int. Rev. Cytol. 86: 97–128

    Google Scholar 

  5. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ & Davis RW (1998) Mol. Cell. 2: 65–73

    Google Scholar 

  6. Klevecz RR & Ruddle FH (1968) Science 159: 634–636

    Google Scholar 

  7. Klevecz RR (1969) J. Cell Biol. 43: 207

    Google Scholar 

  8. Klevecz RR (1976) Proc. Natl. Acad. Sci. USA 73: 4012

    Google Scholar 

  9. Klevecz RR & Shymko RM (1985) Cell Tissue Kinet. 18: 263–271

    Google Scholar 

  10. Svelczer A, Novak B & Mitchison JM (1999) J. Cell. Sci. 112: 1085–1092

    Google Scholar 

  11. Hartwell L (1974) Science 183: 46–51

    Google Scholar 

  12. Novak B & Mitchison JM (1986) J. Cell Sci. 86: 191–206

    Google Scholar 

  13. Creanor J. & Mitchison JM (1986) J. Cell Sci. 1986: 207–215

    Google Scholar 

  14. Smith HT & Mitchison J.M. (1976) Exp. Cell Res. 99: 432–435

    Google Scholar 

  15. Klevecz RR, Kros J & Gross SD (1978) Exp. Cell Res. 116: 285

    Google Scholar 

  16. Kauffman SA & Wille JJ (1975) J. Theor. Biol. 55: 47–93

    Google Scholar 

  17. Glass L & Mackey MC (1975) J. Math. Biol. 7: 339–352

    Google Scholar 

  18. Klevecz RR (1998) Physica D 124: 1–10

    Google Scholar 

  19. Wodicka L, Dong H, Mittmann M, Ho MH & Lockhart DJ (1997) Nat. Biotechnol. 15: 1359–1367

    Google Scholar 

  20. DeRisi JL, Iyer VR & Brown PO (1997) Science 278: 680–686

    Google Scholar 

  21. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B & Kinzler KW (1997) Cell 88: 243–251

    Google Scholar 

  22. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ & Davis RW (1998) Mol. Cell. 2: 65–73

    Google Scholar 

  23. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D & Futcher B (1998) Mol. Biol. Cell. 9: 3273–3297

    Google Scholar 

  24. Klevecz RR & Dowse HB (2000) Cell Proliferation 33: 209–218

    Google Scholar 

  25. Klevecz RR (2000) Funct. Integrative Genomics 1: 186–192

    Google Scholar 

  26. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR & Fedoroff NV (2000) Proc. Natl. Acad. Sci. USA 97: 8409–8414

    Google Scholar 

  27. Atler O, Brown PO & Botstein D (2000) Proc. Natl. Acad. Sci. USA 97: 10101

    Google Scholar 

  28. Marr D (1982) In: Freeman WH (Ed) Vision, New York

  29. Daubechies I (1992) Ten Lectures on Wavelets (Vol 61) CBMS-NSF Regional Conf. Series in Appl. Math Society for Industrial and Applied Mathematics, Philadelphia, PA

    Google Scholar 

  30. Daubechies, I, & Sweldens, W. (1998) J. Fourier Anal. 4: 245–267

    Google Scholar 

  31. Sweldens W (1996) Appl. Comput. Harmon. Anal. 3: 186–200

    Google Scholar 

  32. Eisen MB, Spellman PT, Brown PO & Botstein D (1998) Proc. Natl. Acad. Sci. USA 95: 3273–3297

    Google Scholar 

  33. Satroutdinov AD, Kuriyama H & Kobayashi, H. (1992) FEMS Microbiol. Lett. 77: 261–267

    Google Scholar 

  34. Murray DB, Engelen F, Lloyd D & Kuriyama H (1999) Microbiology 145: 2739–2745

    Google Scholar 

  35. Murray DB, Engelen FA, Keulers M, Kuriyama H & Lloyd D (1998) FEBS Lett. 431: 297–299

    Google Scholar 

  36. Keulers M, Suzuki T, Satroutdinov AD & Kuriyama H (1996) Yeast 12: 673–682

    Google Scholar 

  37. Keuleers M & Kuriyama H (1978) In Information Processing in Cells and Tissues (Eds by Holcombe WML, Paton R, & Holcombe M pp. 85–94, Plenum, New York

    Google Scholar 

  38. Klevecz RR & Murray DB (2001) IEEEWorkshop on Nonlinear Signal and Image Processing (in press)

  39. Sohn H-Y, Adams, CA & Kuriyama H (2001) J. Bacteriol. (in press)

  40. Tyson CB, Lord PG & Wheals AE (1979) J. Bacteriol. 138: 92–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klevecz, R.R., Murray, D.B. Genome wide oscillations in expression – Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype. Mol Biol Rep 28, 73–82 (2001). https://doi.org/10.1023/A:1017909012215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017909012215

Navigation