Skip to main content
Log in

Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The integrases of retrotransposons (class I) and retroviruses and the transposases of bacterial type elements (class II) were compared. The DDE signature that is crucial for the integration of these elements is present in most of them, except for the non-LTR retrotransposons and members of the hAT and P super-families. Alignment of this region was used to infer the relationships between class II elements, retrotransposons, and retroviruses. The mariner-Tc1 and the Pogo-Fot1 super-families were found to be closely related and probably monophyletic, as were LTR retrotransposons and retroviruses. The IS elements of bacteria were clustered in several families, some of them being closely related to the transposase of the mariner-Tc1 super-family or to the LTR retrotransposon and retrovirus integrases. These results plus that of Xiong and Eickbush (1990) were used to develop an evolutionary history suggesting a common ancestral origin(s) for the integrases and transposases containing the DDE signature. The position of the telomeric elements (Het-A and TART) was assessed by comparing their gag and reverse transcriptase domains (when present) to those of group II introns and non-LTR retrotransposons. This preliminary analysis suggests that telomeric elements may be derived from non-LTR retrotransposons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avancini, R.M.P., K.K.O. Walden & H.M. Robertson, 1996. The genomes of most animals have multiple members of the TC1 family of transposable elements. Genetica 98: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Baker, T.A. & L. Luo, 1994. Identification of residues in the Mu transposase essential for catalysis. Proc. Natl. Acad. Sci. USA 91: 6654–6658.

    Article  PubMed  CAS  Google Scholar 

  • Bigot, Y., C. Augé-Gouillou & G. Periquet, 1996. Computer analy-ses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-mariner transposon family. Gene 174:: 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Bushman, F.D., A. Engelman, I. Palmer, P. Wingfield & R. Craigie, 1993. Domains of the integrase protein of human immunodefi-ciency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Acad. Sci. USA 90: 3428–3432.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, B.R., T.J. Hong, S.D. Findley & W.M. Gelbart, 1991. Evi-dence for a common evolutionary origin of inverted repeat trans-posons in Drosophila and plants: hobo, Activator,andTam3.Cell 66: 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., D. Anxolabehere & T. Langin, 1994. The strange phyloge-nies of transposable elements: are the horizontal transfer the only explanation? Trends in Genetics 10: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., C. Bazin, D. Anxolabéhère & T. Langin, 1996a. Hori-zontal tranfers and the evolution of transposable elements, pp. 15–30 in Stability of DNA, horizontal transfer and expression of transgenes, edited by E.R. Schmidt and T. Hankeln. In Press. Springer-Verlag, Heidelberg/New York.

    Google Scholar 

  • Capy, P., R. Vitalis, T. Langin, D. Higuet & C. Bazin, 1996b. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42: 359–369.

    PubMed  CAS  Google Scholar 

  • Capy, P., C. Bazin, D. Hinguet & T. Langin, 1997. Dynamic and Evo-lution of Transposable Elements. R.G. Landes Company, Austin, Texas, USA. In press.

    Google Scholar 

  • Cavalier-Smith, T., 1991. Intron phylogeny: a new hypothesis. T.I.G. 7: 145–148.

    CAS  Google Scholar 

  • Cummings, M.P., 1994. Transmission patterns of eukaryotic trans-posable elements: arguments for and against horizontal transfer. TREE 9: 141–145.

    Google Scholar 

  • Daboussi, M.J., T. Langin & Y. Brygoo, 1992. aFot 1, a new family of fungal transposable elements. Mol. Gen. Genet. 232:: 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Doak, T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A pro-posed super-family of transposase-related genes: new members in transposon-like elements of cilliated protozoa and a common “D35E” motif. Proc. Natl. Acad. Sci USA 91: 942–946.

    Article  PubMed  CAS  Google Scholar 

  • Dyda, F., A.B. Hickman, T.M. Jenkins, A. Engelman, R. Craigie & D.R. Davies, 1994. Crystal structure of the catalytic domain of the HIV-1 integrase: similarity to other polynucleotidyl transferase. Science 266:: 1981–1986.

    PubMed  CAS  Google Scholar 

  • Eickbush, T.H., 1992. Transposing without ends: the non-LTR retro-transposable elements. New Biol. 4: 430–440.

    PubMed  CAS  Google Scholar 

  • Fayet, O., P. Ramond, P. Polard, M.F. Frère & M. Chandler, 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4: 1771–1777.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package). Ver-sion 3.5.c University of Washington: Seattle, USA.

    Google Scholar 

  • Flavell, A.J., 1992. Ty1-copia group retrotransposons and the evolu-tion of retroelements in eukaryotes. Genetica 86: 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Genetic Computer Group, 1991. Program Manual for the GCG pack-age, Version 7. Madison Wisconsin USA.

    Google Scholar 

  • Geourjon, C. & G. Deleage, 1995. SOPMA: significant improvments in protein secondary structure prediction by prediction of from multple alignments. Comput. Applic. Biosci. 11: 681–684.

    CAS  Google Scholar 

  • Glayser, D.C., I.N. Roberts, D.B. Archer & R.P. Oliver, 1995. The isolation of Ant1, a transposable element from Aspergillus niger. Mol. Gen. Genet. 249:: 432–438.

    Google Scholar 

  • Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular struc-ture of a somatically unstable element in Drosophila. Proc. Natl. Acad. Sci. USA 83: 8684–8688.

    Article  PubMed  CAS  Google Scholar 

  • Khan, E., J.P.G. Mack, R.A. Katf, J. Kulkosky & A.M. Skalka, 1991. Retroviral integrase domains: DNA binding and the recognition of LTR seqeunces. Nucl. Acids. Res. 19: 851–860.

    PubMed  CAS  Google Scholar 

  • Kulkosky, J., K.S. Jones, R.A. Katz, J.P.G. Mack & A.M. Skalka, 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331–2338.

    PubMed  CAS  Google Scholar 

  • Lemesle-Varloot, L., B. Henrissat, C. Gaboriaud, V. Bissery, A. Morgat. & J.P. Mornon, 1990. Hydrophobic cluster analysis: pro-cedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 72: 555–574.

    Article  PubMed  CAS  Google Scholar 

  • Lenich, A.G. & A.C. Glasgow, 1994. Amino-acid sequence homol-ogy between Piv, an essential protein in site-specific inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements. J. Bact. 176:: 4160–4164.

    PubMed  CAS  Google Scholar 

  • Li, W. & J.E. Shaws, 1993. A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res. 21: 59–67.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., D.D. Aguiar & D.L. Hartl, 1997. Mutation in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc. Natl. Acad. Sci. USA 94: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  • Luan, D.D., M.H. Korman, J.L. Jakubczak & T.H. Eickbush, 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal traget site: a mechanism for non-LTR retrotrans-position. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, P., A. Rejasse, P. Capy, T. Langin & G. Riba, 1997. Isola-tion of the transposable element Hupfer from the entomopatho-genic fungus Beauveria bassiana, by insertion mutagenesis in the nitrate reductase structural gene 256:: 195–202.

    CAS  Google Scholar 

  • Pardue, M.L., 1995. Drosophila telomeres: another way to end it all, pp. 339–370 in Tel omeres, edited by C. Greider and E.H. Blackburn. Cold Spring Harbor Laboratory Press.

  • Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L. Traverse, 1996. Drosophila telomeres: new views on chromo-some evolution. Trends in Genetics 12: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Polard, P. & M. Chandler, 1995. Bacterial transposase and retroviral integrases. Mol. Microbiol. 15: 13–23.

    PubMed  CAS  Google Scholar 

  • Rice, P. & K. Mizuuchi, 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1993. The mariner transposbale element is wide-spread in insects. Nature 362:: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1996. Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol. Gen. Genet. 252:: 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1997. Multiple mariner transposons in flatworms and hydras are related to those of insects. J. Heredity. 88: 195–201.

    CAS  Google Scholar 

  • Robertson, H.M. & E.G. MacLeod, 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediter-ranean fruit fly, and related arthropods. Insect Mol. Biol. 2: 125–139.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M., Z.L. Zumpano, A.R. Lohe & D.L. Hartl, 1996. Reconstruction of the ancient mariners of humans. Nature Genet-ics. 12: 360–361.

    Article  CAS  Google Scholar 

  • Satta, Y., T. Gojobori, T. Maruyama & I.S. Chigusa, 1985. Tn3 resolvase-like sequence in P transposable element of Drosophila melanogaster genome. Jap. J. Genetics 60: 261–266.

    Google Scholar 

  • Serre, M.C., C. Turlan, M.L. Bortolin & M. Chandler, 1995. Mutage-nesis of the IS1 transposase: importance of his-arg-tyr for activity. J. Bact. 177:: 5070–5077.

    PubMed  CAS  Google Scholar 

  • Skalka, A.M., 1993. Retroviral DNA integration: lessons for trans-poson shuffling. Gene 135:: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Smit, A.F. & A.D. Riggs, 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L., 1993. Phylogenetic analysis using parsimony. Ver-sion 3.1.1. Smithsonian Institution Washington DC.

  • Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    PubMed  CAS  Google Scholar 

  • Tudor, M., M. Lobocka, M. Goodell, J. Pettitt & K. O'Hare, 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232:: 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Vos, J.C. & R.H.A. Plasterk, 1994. Tc1 transposase of Caenorhab-ditis elegans is an endonuclease with a bipartite binding domain. The EMBO J. 13: 6125–6132

    CAS  Google Scholar 

  • Warren, W.D., P.W. Atkinson & D.A. O'Brochta, 1994. The Hermes transposable element from house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac and Tam3 ( hAT) element family. Genet. Res. Camb. 64: 87–97.

    CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroele-ments based upon their reverse transcriptase sequences. The EMBO J. 9: 3353–3362.

    CAS  Google Scholar 

  • Zimmerly, S., H. Guo, P.S. Perlman & A. Lambowitz, 1995. Group II intron mobility ocurs by target DNA-primed reverse transcription. Cell 82: 545–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capy, P., Langin, T., Higuet, D. et al. Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor?. Genetica 100, 63–72 (1997). https://doi.org/10.1023/A:1018300721953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018300721953

Navigation