Skip to main content
Log in

Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The large-scale structure of chromatin corresponding to G- and R-bands in human G0/G1 interphase nuclei was compared. Fluorescence in situ hybridization (FISH) was used to measure the interphase distance between 42 pairs of probes separated by 0.1–1.5Mbp. The probe pairs were derived from 21q22.2 and Xp21.3, G-band positive regions, and from 4p16.3, 6p21.3, and Xq28, R-band positive regions. Distributions of measured interphase distances in all regions approximated a Rayleigh distribution, suggesting that the chromatin follows a random-walk path over this range. A linear correlation of mean-square interphase distance and genomic separation, also indicative of random-walk folding, was observed in all regions. The slope of the correlation observed using probes from G-band regions was systematically lower than that from R-band regions. The difference in the slope between Xp21.3 and Xq28 was particularly striking and was observed in normal fibroblast cells, fixed alternatively with methanol and acetic acid or paraformaldehyde, and HeLa cells. These results demonstrate regional differences in large-scale chromosome structure during interphase, with the more openly configured chromatin corresponding to R-bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardi G (1989) The isochore organization of the human genome. Annu Rev Genet 23: 637–661.

    Article  PubMed  Google Scholar 

  • Blanck G, Strominger JL (1988) Molecular organization of the DO subregion (DO-DX-DV-DQ) of the human MHC and its evolutionary implications. J Immunol 141: 1734–1737.

    PubMed  Google Scholar 

  • Bucan M, Zimmer M, Whaley WL et al. (1990) Physical maps of 4p16.3, the area expected to contain the Huntington disease mutation. Genomics 6: 1–15.

    Article  PubMed  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Biophysical Chemistry. New York: Freeman, pp 979–1039.

    Google Scholar 

  • Comings DE (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet 20: 550–560.

    Google Scholar 

  • Comings DE (1978) Mechanisms of chromosome banding and implications for chromosome structure. Annu Rev Genet 12: 25–46.

    Article  PubMed  Google Scholar 

  • Craig JM, Bickmore WA (1993) Chromosome bands-flavours to savour. BioEssays 15: 349–354.

    Article  PubMed  Google Scholar 

  • Cremer T, Kurz A, Zirbel R et al. (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symp Quant Biol 58: 777–792.

    PubMed  Google Scholar 

  • Drouin R, Lemieux N, Richer CL (1991) Chromosome condensation from prophase to late metaphase: relationship to chromosome bands and their replication time. Cytogenet Cell Genet 57: 91–99.

    PubMed  Google Scholar 

  • DuPraw EJ (1965) Macromolecular oranization of nuclei and chromosomes: a folded fibre model based on whole-mount electron microscopy. Nature 206: 338–343.

    PubMed  Google Scholar 

  • Gardiner K (1995) Human genome organization. Curr Opin Genet Dev 5: 315–322.

    Article  PubMed  Google Scholar 

  • Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4: 335–374.

    Article  PubMed  Google Scholar 

  • Hahnfelt P, Hearst JE, Brenner DJ, Sachs RK, Hlatky LR (1993) Polymer models for interphase chromosomes. Proc Natl Acad Sci USA 90: 7854–7858.

    PubMed  Google Scholar 

  • Holberg M, Johnasson (1973) Preferential location of X-ray induced chromosome breakage in the R-bands of human chromosomes. Hereditas 74: 57–68.

    PubMed  Google Scholar 

  • Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet 51: 17–37.

    PubMed  Google Scholar 

  • Kenwrick S, Gitschier J (1989) A contiguous, 3-Mb physical map of Xq28 extending from the color-blindness locus to DXS15. Am J Hum Genet 45: 873–882.

    PubMed  Google Scholar 

  • Kerem B-S, Goitein R, Diamond G, Cedar H, Marcus M. (1984) Mapping of DNase I sensitive regions on mitotic chromosomes. Cell 38: 493–499.

    Article  PubMed  Google Scholar 

  • Manuelidis L, Chen TL (1990) A unified model of eukaryotic chromosomes. Cytometry 11: 8–25.

    Article  PubMed  Google Scholar 

  • Osoegawa K, Susukida R, Okano S et al. (1996) An integrated map with cosmid/PAC contigs of a 4-Mb Down Syndrome critical region. Genomics 32: 375–387.

    Article  PubMed  Google Scholar 

  • Ostashevsky JY, Lange CS (1994) The 30-nm chromatin fiber as a flexible polymer. J Biomol Struct Dyn 11: 813–820.

    PubMed  Google Scholar 

  • Popp S, Scholl HP, Loos P et al. (1990) Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells. Exp Cell Res 189: 1–12.

    Article  PubMed  Google Scholar 

  • Saccone S, De Sario A, Della Valle G, Bernardi G (1992) The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci USA 89: 4913–4917.

    PubMed  Google Scholar 

  • Saccone S, De Sario A, Wiegant J, Raap AK, Della Valle G, Bernardi G. (1993) Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci USA 90: 11929–11933.

    PubMed  Google Scholar 

  • Saccone S, Caccio S, Kusuda J, Andreozzi L, Bernardi G (1996) Identification of the gene-richest bands in human chromosomes. Gene 174: 85–94.

    Article  PubMed  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci USA 92: 2710–2714.

    PubMed  Google Scholar 

  • Saitoh Y, Laemmli UK (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76: 609–622.

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schultz J (1947) The nature of heterochromatin. Cold Spring Harbor Symp Quant Biol 12: 179–181.

    Google Scholar 

  • Spies T, Blanck G, Bresnahan M, Sands J, Strominger JL (1989) A new cluster of genes within the human major histocompatibility complex. Science 243: 214–217.

    PubMed  Google Scholar 

  • Trask B (1997) Fluorescence in situ hybridization. In: Birren B, Green E, Hieter P, Myers R eds. Genome Analysis: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press (in press).

    Google Scholar 

  • Trask BJ, Pinkel D, van den Engh GJ (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–717.

    Article  PubMed  Google Scholar 

  • Trask BJ, Massa H, Kenwrick S, Gitschier J (1991) Mapping of human chromosome Xq28 by 2-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48: 1–15.

    PubMed  Google Scholar 

  • Trask BJ, Allen S, Massa H et al. (1993) Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization. Cold Spring Harbor Symp Quant Biol 58: 767–775.

    PubMed  Google Scholar 

  • van den Engh GJ, Sachs R, Trask BJ (1992) Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science 257: 1410–1412.

    PubMed  Google Scholar 

  • Walker AP, Chelly J, Love DR et al. (1992) AYAC contig in Xp21 containing the adrenal hyposia congenita and glycerol kinase deficiency genes. Hum Mol Genet 1: 579–585.

    PubMed  Google Scholar 

  • Weintraub H, Grodine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193: 848–856.

    Google Scholar 

  • Weisbrod S (1982) Active chromatin. Nature 297: 289–295.

    Article  PubMed  Google Scholar 

  • Whaley W, Bates G, Novelletto A et al. (1991) Mapping of cosmid clones in Huntington's disease region of chromosome 4. Somatic Cell Mol Genet 17: 83–91.

    Article  PubMed  Google Scholar 

  • Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130: 1239–1249.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, H., Singer, M.J., van den Engh, G.J. et al. Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chromosome Res 5, 157–166 (1997). https://doi.org/10.1023/A:1018438729203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018438729203

Navigation