Skip to main content
Log in

Monocyte–biomaterial interaction inducing phenotypic dynamics of monocytes: a possible role of monocyte subsets in biocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

For the in vitro study of cell–biomaterial surface interactions, the choice of cell type is crucial. In vivo data indicate that during the healing of the implant in the tissues, the pivotal cell types are the macrophages. These cells, upon interaction with any foreign material, might initiate a spectrum of responses, which could lead to acute and chronic inflammatory changes affecting the biocompatibility of the implant. Whether the mechanisms governing the type of evolving inflammatory reaction could be attributed to the macrophages functional differentiation mirrored by monocyte subsets during the polymer interaction, is poorly described. This in vitro study, therefore, attempted to investigate whether different biomaterials influence monocyte cellular activity, determined by the myeloperoxidase level and mitochondrial XTT cleavage, and phenotype dynamics characterized by the presence of CD14, RM 3/1 and 27E10 antigens. It is shown that different polymers exert differential potential to influence monocytes, both in their cellular activity and their phenotypic pattern. Thus, these findings demonstrating material-induced monocyte activation and monocyte phenotype modulation, are suggestive of the monocyte role as reporter cells in evaluating the biocompatibility of a synthetic medical device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. H. ZHAO, J. M. ANDERSON, A. HILTNER, G. A. LODOEN and C. R. PAYET, J. Biomed. Mater. Res. 26 (1992) 1019.

    Google Scholar 

  2. W. J. KAO, Q. H. ZHAO, A. HILTNER and J. M. ANDERSON, ibid. 38 (1994) 73.

    Google Scholar 

  3. T. N. SALTHOUSE, ibid. 18 (1984) 395.

    Google Scholar 

  4. J. M. ANDERSON, Cardiovasc. Pathol. 2 (1993) 3: 35S.

  5. C. SUNDERKÖTTER, K. STEINBRINK, M. GOEBELER, R. BHARDWAJ and C. SORG, J. Leukoc. Biol. 55 (1995) 410.

    Google Scholar 

  6. J. M. ANDERSON, ASAIO 11 (1988) 101.

    Google Scholar 

  7. S. A. M. ALI, P. J. DOHERTY and D. F. WILLIAMS, Biomaterials 15 (1994) 779.

    Google Scholar 

  8. J. A. HUNT, B. F. FLANAGAN, P. J. McLAUGHLIN, I. STRICKLAND and D. F. WILLIAMS, J. Biomed. Mater. Res. 31 (1996) 139.

    Google Scholar 

  9. K. M. DEFIFE, J. K. YUN, A. AZEEZ, S. STACK, K. ISHIHARA, N. NAKABAYASHI, E. COLTON and J. M. ANDERSON, ibid. 29 (1995) 431.

    Google Scholar 

  10. R. KAPUR, J. LILIEN, G. L. PICCIOLO and J. BLACK, ibid. 32 (1996) 133.

    Google Scholar 

  11. R. S. BHARDWAJ, C. ZOTZ, G. ZWADLO-KLARWASSER, J. ROTH, M. GOEBELER, K. MAHNKE, M. FALK, G. MEINARDUS-HAGER and C. SORG, Eur. J. Immunol. 22 (1992) 1891.

    Google Scholar 

  12. G. ZWADLO, R. SCHLEGEL and C. SORG, J. Immunol. 137 (1986) 512.

    Google Scholar 

  13. S. D. WRIGHT, R. A. RAMOS, P. S. TOBIAS, R. J. ULEWITCH and J. C. MATHISON, Science 249 (1990) 1431.

    Google Scholar 

  14. E. M. E. VERDEGAAL, I. BLOCKLAND, H. BEEKHUIZEN and R. VAN FURTH (eds.), in “Mononuclear Phagocytes” (Kluwer Academic, Dordrecht, The Netherlands, 1992). p. 123.

    Google Scholar 

  15. T. MOSMANN, J. Immunol. Method. 65 (1983) 55.

    Google Scholar 

  16. I. WENZEL, J. ROTH and C. SORG, Eur. J. Immunol. 26 (1996) 2758.

    Google Scholar 

  17. C. A. OWEN, E. J. CAMPBELL and R. A. STOCKLEY, J. Leukoc. Biol. 51 (1992) 400.

    Google Scholar 

  18. L. NORDSLETTEN, A. K. M. HOGASEN, Y. T. KONTTINEN, S. SANTAVIRTA, P. ASPENBERG and A. O. AASEN, Biomaterials 17 (1996) 1521.

    Google Scholar 

  19. G. C. ZENNI, J. Invest. Surg. 7 (1994) 135.

    Google Scholar 

  20. 20. K. MAHNKE, R. BHARDWAJ and C. SORG, J. Leukoc. Biol. 57 (1995) 63.

    Google Scholar 

  21. R. E. MERCHANT, K. M. MILLER and J. M. ANDERSON, J. Biomed. Mater. Res. 18 (1984) 1169.

    Google Scholar 

  22. S. S. KAPLAN, R. E. BASFORD, E. MORA, M. H. JEONG and R. L. SIMMONS, ibid. 26 (1992) 1039.

    Google Scholar 

  23. A. BOYUM, Scand. J. Immunol. 17 (1983) 429.

    Google Scholar 

  24. C. A. OWEN, M. A. CAMPBELL, S. S. BOUKEDES, R. A. STOCKLEY and E. J. CAMPBELL, Amer. J. Physiol. 267 (1994) 267.

    Google Scholar 

  25. K. ODINK, N. CERLETTI, J. BRÜGGEN, R. G. CLERC, L. TARCSAY, G. ZWADLO, G. GERHARDS, R. SCHLEGEL and C. SORG, Nature 330 (1987) 80.

    Google Scholar 

  26. H. BEEKHUIZEN, I. BLOKLAND and R. VON FURTH, J. Immunol. 150 (1993) 950.

    Google Scholar 

  27. C. GRETZER, A. S. ERIKSSON, B. ALLDEN, L. E. ERIKSON and P. THOMSEN, Biomaterials 17 (1996) 851.

    Google Scholar 

  28. A. S. ERIKSSON, L. E. ERIKSON and P. THOMSEN, J. Mater. Sci. Mater. Med. 5 (1994) 269.

    Google Scholar 

  29. B. KLOSTERHALFEN, U. KLINGE, U. HENZE, R. BHARDWAJ, J. CONZE and V. SCHUMPELICK, Langenbecks Arch. Chir. 382 (1997) 87.

    Google Scholar 

  30. D. F. EIERMAN, C. E. JOHNSON and S. HASKILL, J. Immunol. 142 (1989) 1970.

    Google Scholar 

  31. A. D. YUROCHKO, D. Y. LIU, D. EIERMAN and S. HASKILL, Proc. Nat. Acad. Sci. USA 89 (1992) 9034.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BHARDWAJ, R.S., HENZE, U., KLEIN, B. et al. Monocyte–biomaterial interaction inducing phenotypic dynamics of monocytes: a possible role of monocyte subsets in biocompatibility. Journal of Materials Science: Materials in Medicine 8, 737–742 (1997). https://doi.org/10.1023/A:1018552326808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018552326808

Keywords

Navigation