Skip to main content
Log in

Regulation of the Expression of the sn-Glycerol-3-Phosphate Dehydrogenase Gene in Drosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

P element-mediated transformation has been usedto investigate the regulation of expression of thesn-glycerol-3-phosphate dehydrogenase gene ofDrosophila melanogaster. A 13-kb constructcontaining the eight exons and associated introns, 5 kb of the5′ region, and 3 kb downstream from the structuralgene produced normal levels of enzyme activity andrescued the poor viability of flies lacking the enzyme. All the regulatory elements essential fornormal enzyme expression were located in a fragment thatincluded the exons and introns and 1-kb upstreamnoncoding sequence. Deletions of the 1.6-kb secondintron reduced activity to 25%. Transformants withfusion constructs between the sn-glycerol-3-phosphatedehydrogenase gene and the beta-galactosidase gene fromE. coli revealed three elements that affectedexpression. A (CT)9 repeat element at the5′ end of the second intron increased expressionin both larvae and adults, particularly at emergence. Asecond regulatory element, which includes a(CT)7 repeat, was located 5′ to the TATA box and had similareffects on the gene's expression. A third, undefined,enhancer was located in the second intron, between 0.5and 1.8 kb downstream of the translation initiationcodon. This element increases enzyme activity to asimilar extent in larvae and adults but has littleeffect when the enhancer at the 5′ end of theintron is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Bartoszewski, S. (1996). Ph.D. thesis, The Australian National University, Canberra.

  • Bartoszewski, S., and Gibson, J. B. (1994). Injecting un-dechorionated eggs of Drosophila melanogaster under ethanol. Dros. Inform. Serv. 75:205.

    Google Scholar 

  • Bewley, G. C. (1981). Genetic control of the developmental program of α-glycerol-3-phosphate dehydrogenase isozymes in Drosophila melanogaster: Identification of a cis-acting temporal element affecting GPDH-3 expression. Dev. Genet. 2:113.

    Google Scholar 

  • Bewley, G. C., and Lucchesi, J. C. (1977). Origin of α-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster and their functional relationship in the α-glycerophosphate cycle. Biochem. Genet. 15:235.

    Google Scholar 

  • Bewley, G. C., and Miller, S. (1979). Origin and differentiation of the soluble α-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster. Isozymes Curr. Top. Biol. Med. Res. 3:23.

    Google Scholar 

  • Bewley, G. C., Cook, J. L., Kusakabe, S., Mukai, T., Rigby, D. L., and Chambers, G. K. (1989). Sequence, structure and evolution of the gene coding for sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Nucleic Acids Res. 17:8553.

    Google Scholar 

  • Collier, G. E., Sullivan, D. T., and MacIntyre, R. J. (1976). Purification of α-glycerophosphate dehydrogenase from Drosophila melanogaster. Biochim. Biophys. Acta 429:316.

    Google Scholar 

  • Cook, J. L., Bewley, G. C., and Shaffer, J. B. (1988). Drosophila sn-glycerol-3-phosphate dehydrogenase isozymes are generated by alternate pathways of RNA processing resulting in different carboxyl-terminal amino acid sequences. J. Biol. Chem. 263:10858.

    Google Scholar 

  • Gasser, S. M., and Laemmli, U. K. (1987). A glimpse at chromosomal order. Trends Genet. 3:16.

    Google Scholar 

  • Geer, B. W., McKechnie, S. W., and Langevin, M. L. (1983). Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. J. Nutr. 113:1632.

    Google Scholar 

  • Gibson, J. B., Wilks, A. V., Cao, A., and Freeth, A. L. (1986). Dominance for sn-glycerol-3-phosphate dehydrogenase activity in Drosophila melanogaster: Evidence for differential allelic expression mediated via a trans-acting effect. Heredity 56:227.

    Google Scholar 

  • Gilbert, L. I. (1967). Lipid metabolism and function in insects. Adv. Insect Physiol. 4:69.

    Google Scholar 

  • Grell, E. H. (1967). Electrophoretic variants of α-glycerophosphate dehydrogenase in Drosophila melanogaster. Science 158:1319.

    Google Scholar 

  • Gremke, L., Lord, P. C., Sabacan, L., Lin, S. C., Wohlwill, A., and Storti, R. V. (1993). Coordinate regulation of Drosophila tropomyosin gene expression is controlled by multiple muscle-type-specific positive and negative enhancer elements. Dev. Biol. 159:513.

    Google Scholar 

  • Kerrigan, L. A., Croston, G. E., Lira, L. M., and Kadonaga, J. T. (1991). Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J. Biol. Chem. 266:574.

    Google Scholar 

  • Klemenz, R., Weber, U., and Gehring, W. J. (1987). The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res. 15:3947.

    Google Scholar 

  • Koga, A., Kusakabe, S., Tajima, F., Harada, K., Bewley, G. C., and Mukai, T. (1988). Widespread polymorphism of a tandem duplication in the region of the glycerol-3-phosphate dehydrogenase gene in Drosophila melanogaster. Proc. Jpn. Acad. 64:9.

    Google Scholar 

  • Kotarski, M. A., Pickert, S., and MacIntyre, R. J. (1983). A cytogenetic analysis of the chromosomal region surrounding the α-glycerophosphate dehydrogenase locus of Drosophila melanogaster. Genetics 105:371.

    Google Scholar 

  • Lissemore, J. L., Baumgardner, C. A., Geer, B. W., and Sullivan, D. T. (1990). Effect of dietary carbohydrates and ethanol on expression of genes encoding sn-glycerol-3-phosphate dehydrogenase, aldolase, and phosphoglycerate kinase in Drosophila larvae. Biochem. Genet. 28:615.

    Google Scholar 

  • Lu, Q., Wallrath, L. L., Granok, H., and Elgin, S. C. (1993). (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol. Cell Biol. 13:2802.

    Google Scholar 

  • Meredith, J., and Storti, R. V. (1993). Developmental regulation of the Drosophila tropomyosin II gene in different muscles is controlled by muscle-type-specific intron enhancer elements and distal and proximal promoter control elements. Dev. Biol. 159:500.

    Google Scholar 

  • Niesel, D. W., Bewley, G. C., Miller, S. G., Armstrong, F. B., and Lee, C. Y. (1980). Purification and structural analysis of the soluble sn-glycerol-3-phosphate dehydrogenase isozymes in Drosophila melanogaster. J. Biol. Chem. 255:4073.

    Google Scholar 

  • Niesel, D. W., Pan, Y. C., Bewley, G. C., Armstrong, F. B., and Li, S. S. (1982). Structural analysis of adult and larval isozymes of sn-glycerol-3-phosphate dehydrogenase of Drosophila melanogaster. J. Biol. Chem. 257:979.

    Google Scholar 

  • O'Brien, S. J., and MacIntyre, R. J. (1972). The α-glycerophosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects. Biochem. Genet. 7:141.

    Google Scholar 

  • O'Donnell, K. H., Chen, C. T., and Wensink, P. C. (1994). Insulating DNA directs ubiquitous transcription of the Drosophila melanogaster α1-tubulin gene. Mol. cell Biol. 14:6398.

    Google Scholar 

  • Reed, D. S., and Gibson, J. B. (1994). Molecular heterogeneity of naturally occurring sn-glycerol-3-phosphate dehydrogenase low-activity variants in Drosophila melanogaster. Biochem. Genet. 32:161.

    Google Scholar 

  • Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R. (1988). A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461.

    Google Scholar 

  • Sacktor, B. (1970). Regulation of intermediary metabolism with special reference to control mechanisms in insect flight muscle. Adv. Insect Physiol. 7:267.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Schultz, J. R., Tansey, T., Gremke, L., and Storti, R. V. (1991). A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression. Mol. Cell Biol. 11:1901.

    Google Scholar 

  • Simon, J. A., and Lis, J. T. (1987). A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 15:2971.

    Google Scholar 

  • Soeller, W. C., Oh, C. E., and Kornberg, T. B. (1993). Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol. Cell Biol. 13:7961.

    Google Scholar 

  • Spradling, A. C. (1986). P element-mediated transformation. In Roberts, D. (ed.), Drosophila, A Practical Approach, IRL Press, pp. 175–197.

  • Sullivan, D. T., Donovan, F. A., and Skuse, G. (1983). Developmental regulation of glycerol-3-phosphate dehydrogenase synthesis in Drosophila. Biochem. Genet. 21:49.

    Google Scholar 

  • Symonds, J. E., and Gibson, J. B. (1992). Restriction site variation, gene duplication and the activity of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Biochem. Genet. 30:169.

    Google Scholar 

  • Thummel, C. S., Boulet, A. M., and Lipshitz, H. D. (1988). Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene 74:445.

    Google Scholar 

  • Tsukiyama, T., Becker, P. B., and Wu, C. (1994). ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525.

    Google Scholar 

  • von Kalm, L., Weaver, J., DeMarco, J., MacIntyre, R. J., and Sullivan, D. T. (1989). Structural characterization of the α-glycerol-3-phosphate dehydrogenase-encoding gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 86:5020.

    Google Scholar 

  • White, H., and Kaplan, N. O. (1969). Purification and properties of two types of diphosphopyridine nucleotide linked α-GPDH's from chicken breast muscle and chicken liver. J. Biol. Chem. 244:6031.

    Google Scholar 

  • Wilanowski, T. M., Gibson, J. B., and Symonds, J. E. (1995). Retrotransposon insertion induces an isozyme of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92:12065.

    Google Scholar 

  • Wojtas, K., Slepecky, N., von Kalm, L., and Sullivan, D. (1997). Flight muscle function in Drosophila requires colocalization of glycolytic enzymes. Mol. Biol. Cell 8:1665.

    Google Scholar 

  • Wright, D. A., and Shaw, C. R. (1969). Genetics and ontogeny of α-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster. Biochem. Genet. 3:343.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoszewski, S., Gibson, J.B. Regulation of the Expression of the sn-Glycerol-3-Phosphate Dehydrogenase Gene in Drosophila melanogaster. Biochem Genet 36, 329–350 (1998). https://doi.org/10.1023/A:1018745412966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018745412966

Navigation