Skip to main content
Log in

Characterization of Lethal Drosophila melanogaster alpha-Actinin Mutants

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

We have partially characterized four Drosophilamelanogaster alpha-actinin gene mutants,I(1)2Cb1, I(1)2Cb2,I(1)2Cb4, and I(1)2Cb5. Wedemonstrate that in each case the mutation is caused bya chromosomal rearrangement that precludes normal proteinsynthesis. In the absence of alpha-actinin, fliescomplete embryogenesis and develop into flaccid larvaethat die within approximately 24 hr. These larvae have noticeable muscle dysfunction at hatching,although they, nevertheless, are capable of escapingfrom the egg membranes and of subsequent crawlingmovements. During larval development muscles degenerate, progressively limiting mobility and ultimatelycausing death. Electron microscopy of mutant musclefibers reveals that myofibrils are grossly disrupted inone day old larvae and that electron-dense structures reminiscent of those seen in human nemalinemyopathies are present throughout larval life. Our workrigorously demonstrates that alpha-actinin deficienciesare the cause of I(1)2Cb muscle defects. We anticipate that the alpha-actinin mutants described hereinwill facilitate in vivo tests of spectrin superfamilyprotein domain functions using a combination of directedmutagenesis and germline transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Davis, K. A., and Lux, S. E. (1989). Hereditary disorders of the red cell membrane skeleton. Trends Genet. 5:222.

    Google Scholar 

  • Deatherage, J. F., Cheng, N., and Bullard, B. (1989). Arrangement of filaments and cross-links in the bee flight muscle Z-disk by image analysis of oblique sections. J. Cell Biol. 108:1175.

    Google Scholar 

  • Ervasti, J. M., and Campbell, K. P. (1991). Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121.

    Google Scholar 

  • Fyrberg, E., Kelly, M., Ball, E., Fyrberg, C., and Reedy, M. C. (1990). Molecular genetics of Drosophila alpha-actinin: Mutant alleles disrupt Z-disc integrity and muscle insertions. J. Cell Biol. 110:1999.

    Google Scholar 

  • Hoffman, E. P., Brown, R. H., and Kunkel, L. M. (1987). Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 51:919.

    Google Scholar 

  • Homyk, T., and Emerson, C. P., Jr. (1988). Functional interactions between unlinked muscle genes within haplo-insufficient regions of the Drosophila genome. Genetics 119:105.

    Google Scholar 

  • Laing, N. G., Wilton, S. D., Akkari, P.A., Dorosz, S., Boundy, K., Kneebone, C., Blumberys, P., White, S., Watkins, H., Love, D. R., and Huan, E. (1995). A mutation in the α-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nature Genet. 9:75.

    Google Scholar 

  • Lee, J. K., Coyne, R. S., Dubreuil, R. R., Goldstein, L. S. B., and Branton, D. (1993). Cell shape and interaction defects in α-spectrin mutants of Drosophila melanogaster. J. Cell Biol. 123:1797.

    Google Scholar 

  • Masaki, T., Endo, M., and Ebashi, S. (1967). Localization of the 65 component of alpha-actinin at Z-band. J. Biochem. (Tokyo) 62:630.

    Google Scholar 

  • Matsumoto, H., Isona, K., Pye, Q., and Park, W. L. (1987). Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. Proc. Natl. Acad. Sci. USA 84:985.

    Google Scholar 

  • Oro, A. E., McKeown, M., and Evans, R. M. (1990). Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid × receptor. Nature 347:298.

    Google Scholar 

  • Perrimon, N., Engstrom, L., and Mahowald, A. (1985). Developmental genetics of the 2C-D region of the Drosophila X-chromosome. Genetics 111:23.

    Google Scholar 

  • Roulier, E. M., Fyrberg, C., and Fyrberg, E. (1992). Perturbations of Drosophila alpha-actinin cause muscle paralysis, weakness, and atrophy, but do not cause obvious nonmuscle phenotypes. J. Cell Biol. 116:911.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463.

    Google Scholar 

  • Volk, T., Fessler, L. I., and Fessler, J. H. (1990). A role for integrin in the formation of sarcomeric architecture. Cell 63:525.

    Google Scholar 

  • Yamaguchi, M., Robson, R. M., Stromer, M. H., and Oda, T. (1978). Actin filaments from the backbone of nemaline myopathy rods. Nature 271:265.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyrberg, C., Ketchum, A., Ball, E. et al. Characterization of Lethal Drosophila melanogaster alpha-Actinin Mutants. Biochem Genet 36, 299–310 (1998). https://doi.org/10.1023/A:1018789227987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018789227987

Navigation