Skip to main content
Log in

Phylogenetic comparative methods and the geographic range size – body size relationship in new world terrestrial carnivora

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Most recent papers avoid describing macroecological relationships and interpreting then without a previous control of non-independence in data caused by phylogenetic patterns in data. In this paper, we analyzed the geographic range size – body size relationship for 70 species of New World terrestrial Carnivora (‘fissipeds’) using various phylogenetic comparative methods and simulation procedures to assess their statistical performance. Autocorrelation analyses suggested a strong phylogenetic pattern for body size, but not for geographic range size. The correlation between the two traits was estimated using standard Pearson correlation across species (TIPS) and four different comparative methods: Felsenstein's independent contrasts (PIC), autoregressive method (ARM), phylogenetic eigenvector regression (PVR) and phylogenetic generalized least-squares (PGLS). The correlation between the two variables was significant for all methods, except PIC, in such a way that ecological mechanisms (i.e., minimum viable population or environmental heterogeneity- physiological homeostasis), could be valid explanations for the relationship. Simulations using different O-U processes for each trait were run in order to estimate true Type I errors of each method. Type I errors at 5% were similar for all phylogenetic methods (always lower than 8%), but equal to 13.1% for TIPS. PIC usually performs better than all other methods under Brownian motion evolution, but not in this case using a more complex combination of evolutionary models. So, recent claims that using independent contrasts in ecological research can be too conservative are correct but, on the other hand, using simple across-species correlation is too liberal even under the more complex evolutionary models exhibited by the traits analyzed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif, E. (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1, 895–909.

    Google Scholar 

  • Bininda-Emonds, O.R.P. and Gittleman, J.L. (2000) Are pinnipeds functionally different from fissiped carnivores? The importance of phylogenetic comparative analysis. Evolution 54, 1011–1023.

    Google Scholar 

  • Bininda-Emonds, O.R.P., Gittleman, J.L. and Purvis, A. (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol. Rev. 74, 143–175.

    Google Scholar 

  • Blackburn, T.M. and Gaston, K. (1998) Some methodological issues in macroecology. Am. Nat. 151, 68–83.

    Google Scholar 

  • Blackburn, T.M. and Gaston, K.J. (2001) Linking patterns in macroecology. J. Anim. Ecol. 70, 338–352.

    Google Scholar 

  • Brown, J.H. (1995) Macroecology. University of Chicago Press, Chicago.

    Google Scholar 

  • Brown, J.H. (1999) Macroecology: progress and prospect. Oikos 87, 3–14.

    Google Scholar 

  • Brown, J.H. and Maurer, B.A. (1987) Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of North American avifauna. Am. Nat. 130, 1–17.

    Google Scholar 

  • Brown, J.H. and Maurer, B.A. (1989) Macroecology: the division of food and space among species on continents. Science 243, 1145–1150.

    Google Scholar 

  • Burt, W.H. and Grossenheider, R.P. (1980) A Field Guide to the Mammals. 3rd edn. Houghton Mifflin Company, Boston and New York.

    Google Scholar 

  • Butler, M., Schoener, T.W. and Losos, J.B. (2000) The relationship between sexual size dimorphism and habitat use in greater Antillean Anolis lizards. Evolution 50, 259–272.

    Google Scholar 

  • Chapman, J.A. and Feldhamer, G.A. (1990) Wild Mammals of North America. The Johns Hopkins University Press, Baltimore and London.

    Google Scholar 

  • Cheverud, J.M., Dow, M.M. and Leutenegger, W. (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39, 1335–1351.

    Google Scholar 

  • Díaz-Uriarte, R. and Garland, T. Jr. (1996) Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from Brownian motion. Syst. Biol. 45, 27–47.

    Google Scholar 

  • Díaz-Uriarte, R. and Garland, T. Jr. (1998) Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst. Biol. 47, 27–47.

    Google Scholar 

  • Diniz-Filho, J.A.F. (2001) Phylogenetic autocorrelation under distinct evolutionary processes. Evolution 55, 1104–1109.

    Google Scholar 

  • Diniz-Filho, J.A.F., Arias, M.C. and Fuchs, S. (1999) Phylogeographic autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.). Heredity 83, 671–680.

    Google Scholar 

  • Diniz-Filho, J.A.F., Coelho, A.S.G. and Sant'Ana, C.E.R. (2000) Statistical inference of correlated evolution among macroecological traits using phylogenetic eigenvector regression. Ecol. Austral 10, 27–36.

    Google Scholar 

  • Diniz-Filho, J.A.F., Sant'Ana, C.E.R. and Bini, L.M. (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52, 1247–1262.

    Google Scholar 

  • Eisenberg, J.F. (1989) Mammals of the Neotropics, Vol. 1. University of Chicago Press, Chicago.

    Google Scholar 

  • Emmons, L.H. (1997) Neotropical Rainforest Mammals: A Field Guide. 2nd edn. University of Chicago Press, Chicago.

    Google Scholar 

  • Felsenstein, J. (1985) Phylogenies and the comparative method. Am. Nat. 125, 1–15.

    Google Scholar 

  • Felsenstein, J. (1988) Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19, 445–471.

    Google Scholar 

  • Garland, T. Jr. and Diaz-Uriarte, R. (1999) Polytomies and phylogenetically independent contrasts: examination of the bounded degrees of freedom approach. Syst. Biol. 48, 547–558.

    Google Scholar 

  • Garland, T. Jr., Dickerman, A.W., Janis, C.M. and Jones, J.A. (1993) Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–292.

    Google Scholar 

  • Garland, T. Jr., Harvey, P.H. and Ives, A.R. (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.

    Google Scholar 

  • Gaston, K.J. (1990) Patterns in the geographical range of species. Biol. Rev. 65, 105–129.

    Google Scholar 

  • Gaston, K.J. (1994) Rarity. Chapman & Hall, London.

    Google Scholar 

  • Gaston, K.J. and Blackburn, T.M. (1996a) Range size-body size relationships: evidence of scale dependence. Oikos 75, 479–485.

    Google Scholar 

  • Gaston, K.J. and Blackburn, T.M. (1996b) Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. J. Anim. Ecol. 65, 701–714.

    Google Scholar 

  • Gaston, K.J. and Blackburn, T.M. (1997) Age, area and avian diversification. Biol. J. Linn. Soc. 62, 239–253.

    Google Scholar 

  • Gaston, K.J. and Blackburn, T.M. (1999) A critique for macroecology. Oikos 84, 353–368.

    Google Scholar 

  • Gaston, K.J. and Blackburn, T.M. (2000) Pattern and Process in Macroecology. Blackwell, London.

    Google Scholar 

  • Gittleman, J.L. and Kot, M. (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241.

    Google Scholar 

  • Gittleman, J.L., Anderson, C.G., Kot, M. and Luh, H.-K. (1996) Phylogenetic lability and rates of evolution: a comparison of behavioral, morphological and life history traits. In E. Martins (ed) Phylogenies and the Comparative Method in Animal Behavior. Oxford University Press, Oxford, pp. 166–205

    Google Scholar 

  • Grafen, A. (1989) The phylogenetic regression. Phil. Transac. Roy. Soc. B, 326, 157–199.

    Google Scholar 

  • Grantham, T.A. (1995) Hierarchical approaches to macroevolution: recent work on species selection and the ‘effect hypothesis’. Ann. Rev. Ecol. Syst. 26, 301–321.

    Google Scholar 

  • Hansen, T.F. (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351.

    Google Scholar 

  • Hansen, T.F. and Martins, E.P. (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50, 1404–1417.

    Google Scholar 

  • Hansen, T.F., Armbruster, W.S. and Antonsen, L. (2000) Comparative analysis of character displacement and spatial adaptations as illustrated by the evolution of Dalechampia Blossoms. Am. Nat. 156 (Suppl.), 17–34.

    Google Scholar 

  • Harvey, P.H. and Pagel, M.D. (1991) The ComparativeMethod in Evolutionary Biology. Cambridge University press, Cambridge.

    Google Scholar 

  • Kelt, D.A. and Van Vuren, D.H. (2001) The ecology and macroecology of mammalian home range. Am. Nat. 157, 637–645.

    Google Scholar 

  • Kirkpatrick, M. and Barton, N.H. (1997) Evolution of a species' range. Am. Nat. 150, 1–23.

    Google Scholar 

  • Legendre, P. and Legendre, L. (1998) Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leroi, A.M., Rose, M.R. and Lauder, G.V. (1994) What does the comparative method reveal about adaptations? Am. Nat. 144, 381–402.

    Google Scholar 

  • Letcher, A.J. and Harvey, P.H. (1994) Variation in geographical range size among mammals of the Paleartic. Am. Nat. 144, 30–42.

    Google Scholar 

  • Martins, E.P. (1994) Estimating rates of character change from comparative data. Am. Nat. 144, 193–209.

    Google Scholar 

  • Martins, E.P. (1996) Phylogenies, spatial autoregression and the comparative method: a computer simulation test. Evolution 50, 1750–1765.

    Google Scholar 

  • Martins, E.P. (2000) Adaptation and the comparative method. Tr. Ecol. Evol. 15, 296–299.

    Google Scholar 

  • Martins, E.P. (2001) COMPARE 4.4 (distributed by the author via http://compare.bio.indiana.edu).

  • Martins, E.P. and Garland, T. Jr. (1991) Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution 45, 534–557.

    Google Scholar 

  • Martins, E.P. and Hansen, T.F. (1996) The statistical analysis of interspecific data: a review and evaluation of phylogenetic comparative methods. In E. Martins (ed.) Phylogenies and The Comparative Method in Animal Behavior. Oxford University Press, Oxford, pp. 22–27.

    Google Scholar 

  • Martins, E.P. and Hansen, T.F. (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149, 646–667.

    Google Scholar 

  • Martins, E.P., Diniz-Filho, J.A.F. and Housworth, E. (2002) Adaptive constraint and the phylogenetic comparative method: a computer simulation test. Evolution 56, 1–13.

    Google Scholar 

  • Maurer, B. (1999) Untangling Ecological Complexity. University of Chicago press, Chicago.

    Google Scholar 

  • Murray, B., Fonseca, C.R. and Westoby, M. (1998) The macroecology of Australian frogs. J. Anim. Ecol. 67, 567–579.

    Google Scholar 

  • Pagel, M.D. (1999) Inferring the historical patterns of biological evolution. Nature 401, 877–884.

    Google Scholar 

  • Price, T. (1997) Correlated evolution and independent contrasts. Phil. Trans. Roy. Soc. B, 352, 519–529.

    Google Scholar 

  • Purvis, A. and Garland, T. (1993) Polytomies in comparative analyses of continuous characters. Syst. Biol. 42, 569–575.

    Google Scholar 

  • Pyron, M. (1999) Relationships between geographical range size, body size, local abundance and habitat breadth in North American suckers and sunfishes. J. Biogeogr. 26, 549–558.

    Google Scholar 

  • Redford, K.H. and Eisenberg, J.F. (1992) Mammals of the Neotropics, Vol. 2. University of Chicago Press, Chicago.

    Google Scholar 

  • Redford, K.H. and Eisenberg, J.F. (1999) Mammals of the Neotropics, Vol. 3. University of Chicago Press, Chicago.

    Google Scholar 

  • Ricklefs, R.E. and Starck, J.M. (1996) Applications of phylogenetically independent contrasts: a mixed report progress. Oikos 77, 167–172.

    Google Scholar 

  • Rohlf, F.J. (1989) NTSYS: Numerical Taxonomy and Multivariate Analysis System. Exeter softwares, New York.

    Google Scholar 

  • Rohlf, F.J. (2001) Geometric interpretations of comparative methods for the analysis of continuous variables. Evolution 50, 2143–2160.

    Google Scholar 

  • Ruggiero, A. and Lawton, J. (1998) Are there latitudinal and altitudinal Rapoport effects in the geographic ranges of Andean passerine birds. Biol. J. Linn. Soc. 63, 283–304.

    Google Scholar 

  • Sokal, R.R. and Jacquez, G.M. (1991) Testing inferences about microevolutonary processes by means of spatial autocorrelation analysis. Evolution 45, 152–168.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1995) Biometry. 3rd ed. W.H. and Freeman, New York.

    Google Scholar 

  • Taylor, C.M. and Gotelli, N.J. (1994) The macroecology of Cyprinella: correlates of phylogeny, body size and geographic range. Am. Nat. 144, 549–569.

    Google Scholar 

  • Williams, P.H. (1992) Worldmap: Priority Areas for Biodiversity (Demonstration Program). Privately distributed, London.

  • Wilson, D.E. and Reeder, D.M. (1993) Mammal Species of the World: A Taxonomic and Geographic Reference. 2nd edn. Smithsonian Institution Press, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alexandre Felizola Diniz-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diniz-Filho, J.A.F., Tôrres, N.M. Phylogenetic comparative methods and the geographic range size – body size relationship in new world terrestrial carnivora. Evolutionary Ecology 16, 351–367 (2002). https://doi.org/10.1023/A:1020210321776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020210321776

Navigation