Skip to main content
Log in

Inducible Nicotine Production in Native Nicotiana as an Example of Adaptive Phenotypic Plasticity

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Nicotine, an inducible defense in a number of Nicotiana species, exemplifies adaptive phenotypic plasticity. The mechanisms responsible for its production are reviewed, and the induced character states are characterized allometrically in order to understand how inducibility changes over ontogeny responds to environmental variables that influence plant growth, and to relate inducible production to plant fitness correlates. The empirical evidence for fitness costs and benefits of inducible nicotine production are considered, and the physiological and ecological mechanisms potentially responsible for the costs are considered. An intimate understanding of the plant's natural history is an essential prerequisite to understanding these costs and benefits. Inducible nicotine production is just one of many traits that are altered after herbivore attack, and the cost–benefit model provides a valuable heuristic framework in which to understand the selective factors responsible for the maintenance of inducibly expressed traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Adler, F. R., and Karban, R. 1994. Defended fortresses or moving targets? Another model of inducible defenses inspired by military metaphors. Am. Nat. 144:813–832.

    Google Scholar 

  • Agrawal, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 279:1201–1202.

    Article  PubMed  Google Scholar 

  • Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Google Scholar 

  • Baldwin, I. T. 1988a. The alkaloidal responses of wild tobacco to real and simulated herbivory. Oecologia 77:378–381.

    Google Scholar 

  • Baldwin, I. T. 1988b. Damage-induced alkaloids in tobacco: Pot-bound plants are not inducible. J. Chem. Ecol. 14:1113–1120.

    Google Scholar 

  • Baldwin, I. T. 1988c. Short-term damage-induced increases in tobacco alkaloids protect plants. Oecologia 75:367–370.

    Google Scholar 

  • Baldwin, I. T. 1989. Mechanism of damaged-induced alkaloids in wild tobacco. J. Chem. Ecol. 15:1661–1680.

    Google Scholar 

  • Baldwin, I. T. 1991. Damage-induced alkaloids in wild tobacco, pp. 47–49, in M. J. Raupp and D. W. Tallamy (eds.). Phytochemical Induction by herbivores. John Wiley & Sons, New York.

    Google Scholar 

  • Baldwin, I. T. 1993. Chemical changes rapidly induced by folivory, pp. 1–23, in E. A. Bernay (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Baldwin, I. T. 1996. Methyl jasmonate-induced nicotine production in Nicotiana attenuata: Inducing defenses in the field without wounding. Entomol. Exp. Appl. 80:213–220.

    Google Scholar 

  • Baldwin, I. T. 1997. Allometric limits to the induced accumulation of nicotine in native tobacco. Plant Species Biol. 11:107–114.

    Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. U.S.A. 95:8113–8118.

    PubMed  Google Scholar 

  • Baldwin, I. T. 1999. The jasmonate cascade and the complexity of induced defense against herbivore attack, in M. Wink (ed.). The Role of Plant Secondary Metabolites and Their Utilization in Biotechnology. Sheffield Academic Press, Sheffied, UK. In press.

    Google Scholar 

  • Baldwin, I. T., and Callahan, P. 1993. Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants. Oecologia 94:534–541.

    Google Scholar 

  • Baldwin, I. T., and Karb, M. J. 1995. Plasticity in allocation of nicotine to reproductive parts in Nicotiana attenuata. J. Chem. Ecol. 21:897–909.

    Google Scholar 

  • Baldwin, I. T., and Morse, L. 1994. Up in smoke: II. Germination of Nicotiana attenuata in response to smoke-derived cues and nutrients in burned and unburned soils. J. Chem. Ecol. 20:2373–2391.

    Google Scholar 

  • Baldwin, I. T., and Ohnmeiss, T. E. 1993. Alkaloidal responses to damage in Nicotiana native to North America. J. Chem. Ecol. 19:1143–1153.

    Google Scholar 

  • Baldwin, I. T., and Ohnmeiss, T. E. 1994a. Coordination of photosynthetic and alkaloidal responses to damage in uninducible and inducible Nicotiana sylvestris. Ecology 75:1003–1014.

    Google Scholar 

  • Baldwin, I. T., and Ohnmeiss, T. E. 1994b. Swords into plowshares? Nicotiana sylvestris does not use nicotine as a nitrogen source under nitrogen-limited growth. Oecologia 98:385–392.

    Google Scholar 

  • Baldwin, I. T., and Schmelz, E. A. 1994. Constraints on an induced defense: The role of canopy area. Oecologia 97:424–430.

    Google Scholar 

  • Baldwin, I. T., and Schmelz, E. A. 1996. Immunological “memory” in the induced accumulation of nicotine in wild tobacco. Ecology 77:236–246.

    Google Scholar 

  • Baldwin, I. T., Sims, C. L., and Kean, S. E. 1990. The reproductive consequences associated with inducible alkaloidal responses in wild tobacco. Ecology 71:252–262.

    Google Scholar 

  • Baldwin, I. T., Oesch, R. C., Merhige, P. M., and Hayes, K. 1993. Damage-induced root nitrogen metabolism in Nicotiana sylvestris: Testing C/N predictions for alkaloid production. J. Chem. Ecol. 19:3029–3043.

    Google Scholar 

  • Baldwin, I. T., Karb, M. J., and Ohnmeiss, T. E. 1994a. Allocation of 15N from nitrate to nicotine: Production and turnover of a damage-induced mobile defense. Ecology 75:1703–1713.

    Google Scholar 

  • Baldwin, I. T., Schemlz, E. A., and Ohnmeiss, T. E. 1994b. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol. 20:2139–2157.

    Google Scholar 

  • Baldwin, I. T., Staszak-Kozinski, L., and Davidson, R. 1994c. Up in smoke: I. Smoke-derived germination cues for the postfire annual Nicotiana attenuata Torr. Ex. Watson. J. Chem. Ecol. 20:2345–2371.

    Google Scholar 

  • Baldwin, I. T., Schemlz, E. A., and Zhang, Z.-P. 1996. Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris. J. Chem. Ecol. 22:61–73.

    Google Scholar 

  • Baldwin, I. T., Preston, C. A., Euler, M. A., and Gorham, D. 1997a. Patterns and consequences of benzyl acetone floral emissions from Nicotiana attenuata plants. J. Chem. Ecol. 23:2327–2343.

    Google Scholar 

  • Baldwin, I. T., Zhang, Z.-P., Diab, N., Ohnmeiss, T. E., E. S., M., Lynds, G. Y., and Schmelz, E. A. 1997b. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201:397–404.

    Google Scholar 

  • Baldwin, I. T., Gorham, D., Schmelz, E. A., Lewandowski, C., and Lynds, G. Y. 1998. Allocation of nitrogen to an inducible defense and seed in Nicotiana attenuata. Oecologia 115:541–552.

    Google Scholar 

  • Barbosa, P., Gross, P., and Kemper, J. 1991. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72:1567–1575.

    Google Scholar 

  • Bazzaz, F. A., Chiariello, N. R., Coley, P. D., and Pitelka, L. F. 1987. Allocating resources to reproduction and defense. BioScience 37:58–67.

    Google Scholar 

  • Bender, C., and Palmer, D. 1996. Biosynthesis of coronatine, a thermoregulated phytotoxin produced by the phytopathogen Pseudomonas syringae. Arch. Microbiol. 166:71–75.

    Google Scholar 

  • Bergey, D. R., Howe, G. A., and Ryan, C. A. 1996. Polypeptide signaling for plants defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. U.S.A. 93:12053–12058.

    PubMed  Google Scholar 

  • Blechert, S., Brodschelm, W., HÖlder, S., Kammerer, L., Kutchan, T. M., MÜller, J. M., Xia, Z. Q., and Zenk, M. H. 1995. The octadecanoic pathways: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. U.S.A. 92:4099–4105.

    PubMed  Google Scholar 

  • Blechert, S., Bockelmann, C., BrÜmmer, O., FÜßlein, M., Gundlach, H., Haider, G., HÖlder, S., Kutchan, T. M., Weiler, E. W., and Zenk, M. H. 1997. Structural separation of biological activities of jasmonates and related compounds. J. Chem. Soc. 23:3549–3559.

    Google Scholar 

  • Bowers, M. D. 1988. Chemistry and coevolution: Iriidoid glycosides, plants and herbivorous insects, pp. 133–166, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Bryant, J. P., Chapin, F. S., and Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Google Scholar 

  • Creelman, R. A., and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    Google Scholar 

  • Dawson, R. F. 1942. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am. J. Bot. 29:66–71.

    Google Scholar 

  • DeMoraes, C. M., Lewis, W. J., Pare, P. W. Albron, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Google Scholar 

  • DeWitt, T. J., Sih, A., and Wilson, D. S. 1998. Costs and limits of phenotypic plasticity. TREE 13:77–81.

    Google Scholar 

  • Eisner, T. E., and Meinwald, J. 1995. The chemistry of sexual selection. Proc. Natl. Acad. Sci. U.S.A. 92:50–55.

    PubMed  Google Scholar 

  • Euler, M., and Baldwin, I. T. 1996. The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107:102–112.

    Google Scholar 

  • Farmer, E. E., and Ryan, C. A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U.S.A. 87:7713–7716.

    PubMed  Google Scholar 

  • Farmer, E. E., and Ryan, C. A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134.

    Article  PubMed  Google Scholar 

  • Feth, F., Wagner, R., and Wagner, K. G. 1986. Regulation in tobacco callus of enzyme activities of the nicotine pathway I. The route from ornithine to methylpyrroline. Planta 168:402–407.

    Google Scholar 

  • Fineblum, W. L., and Rausher, M. D. 1995. Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature 377:517–520.

    Google Scholar 

  • Fowler, S. V., and Lawton, J. H. 1985. Rapidly induced defenses and talking trees: The devil's advocate position. Am. Nat. 126:181–195.

    Google Scholar 

  • Gershenzon, J. 1994. The cost of plant chemical defense against herbivory: A biochemical perspective, pp. 105–173, in E. A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Haslam, E. 1986. Secondary metabolism—fact and fiction. Nat. Prod. Rep. 3:217–249.

    Google Scholar 

  • Herms, D. A., and Mattson, W. J. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283–335.

    Article  Google Scholar 

  • Hibi, N., Higashiguchi, S., Hashimoto, T., and Yamada, Y. 1994. Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735.

    PubMed  Google Scholar 

  • Karban, R. 1993. Costs and benefits of induced resistance and plant density for a native shrub, Gossypium thurberi. Ecology 74:9–19.

    Google Scholar 

  • Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. Chicago University Press, Chicago.

    Google Scholar 

  • Karban, R., and Myers, J. H. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20:331–348.

    Google Scholar 

  • Koiwa, H., Bressan, R. A., and Hasegawa, P. M. 1997. Regulation of protease inhibitors and plant defense. TIPS 2:379–383.

    Google Scholar 

  • Krischik, V. A., Barbosa, P., and Reichelderfer, C. 1988. Three trophic level interactions: Allelochemicals, Manduca sexta (L.), and Bacillus thuringiensis var. kurstaki Berliner. Environ. Entomol. 17:476–482.

    Google Scholar 

  • Lynds, G. Y., and Baldwin, I. T. 1998. Fire, nitrogen, and defensive plasticity. Oecologia In press.

  • Malcolm, S. B., and Zalucki, M. P. 1996. Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomol. Exp. Appl. 80:193–196.

    Google Scholar 

  • Mauricio, R., Rausher, M. D., and Burdick, D. S. 1997. Variation in the defense strategies of plants: Are resistance and tolerance mutually exclusive? Ecology 78:1301–1311.

    Google Scholar 

  • McCloud, E. S., and Baldwin, I. T. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic cid but not nicotine in Nicotiana sylvestris. Planta 203:430–435.

    Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants, pp. 56–133, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Mizusaki, S., Tanabe, Y., Noguchi, M., and Tamaki, E. 1973. Activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol. 14:103–110.

    Google Scholar 

  • Mole, S. 1994. Trade-offs and constraints in plant-herbivore defense theory: A life-history perspective. Oikos 71:3–12.

    Google Scholar 

  • Murray, C. L., Quaglia, M., Arnanson, J. T., and Morris, C. E. 1994. A putative nicotine pump at the metabolic blood-brain barrier of the tobacco hornworm. J. Neurobiol. 25:23–34.

    PubMed  Google Scholar 

  • Nowacki, E., Jurzysta, M., Gorski, P., Nowacka, D., and Waller, G. R. 1976. Effect of nitrogen nutrition on alkaloidd metabolism in plants. Biochem. Physiol. Pflanzen 169:231–240.

    Google Scholar 

  • Ohnmeiss, T. E., and Baldwin, I. T. 1994. The allometry of nitrogen allocation to growth and an inducible defense under nitrogen-limtied growth. Ecology 75:995–1002.

    Google Scholar 

  • Ohnmeiss, T., McCloud, E. S., Lynds, G. Y., and Baldwin, I. T. 1997. Within-plant relationships among wounding, jasmonic acid, and nicotine: Implications for defense in Nicotiana sylvestris. new Phytol. 137:441–452.

    Google Scholar 

  • Parr, J. C., and Thurston, R. 1972. Toxicity of nicotine in synthetic diets to larvae of the tobacco hornworm. Ann. Entomol. Soc. Am. 65:1185–1188.

    Google Scholar 

  • Pigliucci, M., Schlichting, C. D., Jones, C. S., and Schwenk, K. 1996. Developmental reaction norms: The interaction among allometry, ontogeny and plasticity. Plant Spec. Biol. 11:69–85.

    Google Scholar 

  • Preston, C. A., and Baldwin, I. T. 1999. Positive and negative signals regulate germination in the post-fire annual, Nicotiana attenuata. Ecology In press.

  • Rabe, E. 1990. The functional significance of the accumulation of nitrogen-containing compounds. J. Hortic. Sci. 65:231–243.

    Google Scholar 

  • Rusher, M. D. 1996. Genetic analysis of coevolution between plants and their natural enemies. Trends Genet. 12:212–217.

    PubMed  Google Scholar 

  • Reeve, H. K., and Sherman, P. W. 1993. Adaptation and the goals of evolutionary research. Q. Rev. Biol. 68:1–32.

    Google Scholar 

  • Rosenthal, J. P., and Kotanen, P. M. 1994. Terrestrial plant tolerance to herbivory. TREE 9:145–148.

    Google Scholar 

  • Rowell-Rathier, M., and Pasteels, J. M. 1992. Third trophic level influences of plant allelochemical, pp. 243–277, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Saunders, J. W., and Bush, L. P. 1979. Nicotine biosynthetic enzyme activities in Nicotiana tabacum genotypes with different alkaloids levels. Plant Physiol. 64:236–240.

    Google Scholar 

  • Scheiner, S. M. 1993. Genetics and evolution of phenotypic plasiticity. Annu. Rev. Ecol. Syst. 24:35–68.

    Google Scholar 

  • Schlichting, C. D. 1986. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 17:667–693.

    Google Scholar 

  • Schmitt, J., McCormac, A. C., and Smith, H. 1995. A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am. Nat. 146:937–953.

    Google Scholar 

  • Self, L. S., and Guthrie, F. E. 1964. Adaptation of tobacco hornworms to the ingestion of nicotine. J. Insect Physiol. 10:907–914.

    Google Scholar 

  • Simms, E. L. 1992. Costs of plant resistance to herbivores, pp. 392–425 in R. S. Fritz and E. L. Simms, (eds.). Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago.

    Google Scholar 

  • Smiley, J. T., Horn, J. M., and Rank, N. E. 1985. Ecological effects of salicin at three trophic levels: New problems from old adaptations. Science 229:649–651.

    Google Scholar 

  • Snyder, M. J., and Glendinning, J. I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. A. 179:255–261.

    PubMed  Google Scholar 

  • Srauss, S. Y. 1997. Floral characters link herbivores, pollinators, and plant fitness. Ecology 78:1640–1645.

    Google Scholar 

  • Sultan, S. E. 1992. Phenotypic plasticity and the neo-Darwinian legacy. Evol. Trends Plant 6:61–71.

    Google Scholar 

  • Takabayashi, J., and Dicke, M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. TIPS 1:109–113.

    Google Scholar 

  • Tallamy, D. W., and Raupp, M. J. 1991. Phytochemical Induction by Herbivores. John Wiley & Sons, New York.

    Google Scholar 

  • Thompson, J. 1991. Phenotypic plasticity as a component of evolutionary change. TREE 6:246–249.

    Google Scholar 

  • Tuomi, J., NiemelÄ, P., Haukioja, E., SirÉn, S., and Neuvonen, S. 1984. Nutrient stress: An explanation for plant anti-herbivore responses to defoliation. Oecologia 61:208–210.

    Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Google Scholar 

  • Turlings, T. C. J., Loughrin, J. H., McCall, P. J., RÖse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:4169–4174.

    PubMed  Google Scholar 

  • van Dam, N. M., and Baldwin, I. T. 1998. Costs of jasmonate-induced responses in plants competing for limited resources. Ecol. Lett. In press.

  • van der Meijden, E., Wijn, M., and Verkaar, H. J. 1988. Defense and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51:355–363.

    Google Scholar 

  • Wagner, R., Feth, F., and Wagner, K. G. 1986. The regulation of enzyme activities of the nicotine pathway in tobacco. Physiol. Plant. 68:667–672.

    Google Scholar 

  • Wasternack, C., and Parthier, B. 1997. Jasmonate-signalled plant gene expression. TIPS 2:302–307.

    Google Scholar 

  • Weiler, E. W. 1997. Octadecanoid-mediated signal transduction in higher plants. Naturwissenschaften 84:340–349.

    Google Scholar 

  • Zangerl, A. R., and Bazzaz, F. A. 1992. Theory and pattern in plant defense allocation, pp. 363–391, in R. S. Fritz and E. L. Simms (eds.). Plant Resistance to Herbivores and Pathogens. Ecology, Evolution, and Genetics. University of Chicago Press, Chicago.

    Google Scholar 

  • Zhang, Z.-P., and Baldwin, I. T. 1997. Transport of [2-14C]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta 203:436–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, I.T. Inducible Nicotine Production in Native Nicotiana as an Example of Adaptive Phenotypic Plasticity. J Chem Ecol 25, 3–30 (1999). https://doi.org/10.1023/A:1020880931488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020880931488

Navigation