Skip to main content
Log in

Transcription of three sets of genes coding for the core light-harvesting proteins in the purple sulfur bacterium, Allochromatium vinosum

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The nucleotide sequence of the puf operon coding for the subunits of the photosynthetic reaction center and the core light-harvesting complex (LH1) of the purple sulfur bacterium, Allochromatium (A.) vinosum (formally Chromatium vinosum), was completely determined. Unlike other known puf operons, which contain only one set of genes coding for the LH1 apoproteins, pufB and pufA, the A. vinosum puf operon included three sets of pufB and pufA genes with a gene order of pufB 1 A 1 LMCB 2 A 2 B 3 A 3. Northern hybridization analysis suggested that all of the nine puf genes are co-transcribed as a 4.43 kb mRNA. Three small mRNAs corresponding to pufB 2 A 2 B 3 A 3, pufB 2 A 2 B 3, and pufB 2 A 2 were detected, as well as two small mRNAs covering pufB 1 A 1. Analysis of the nucleotide sequence of the puf operon, including the flanking regions and 5′-ends of the six mRNAs, suggested that the transcription of the A. vinosum puf operon is initiated at 74 bp downstream from the bchZstop codon (295 bp upstream from the pufB 1 start codon), and regulated by a promoter located at its direct upstream. The possible promoter is overlapped with a binding motif of a repressor protein for pigment-biosynthesis genes, PpsR or CrtJ, known in other purple bacteria. No other possible promoters were found within the puf genes. These findings indicate that three sets of pufA and pufB genes of A. vinosum are co-transcribed as a long mRNA containing all the puf genes, and, from this long mRNA, the five short mRNAs are possibly derived by post-transcriptional modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard J and Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    PubMed  CAS  Google Scholar 

  • Bauer CE (1995) Regulation of photosynthesis gene expression. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1221–1234. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bélanger G and Gingras G (1988) Structure and expression of the puf operon messenger RNA in Rhodospirillum rubrum. J Biol Chem 263: 7639–7645

    PubMed  Google Scholar 

  • Bissig I, Wagner-Huber RV, Brunisholz RA and Zuber H (1990) Multiple antenna complexes in various purple photosynthetic bacteria. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 199–210. Plenum Press, New York

    Google Scholar 

  • Bose SK (1963) Media for anaerobic growth of photosynthetic bacteria. In: Gest H, San-Pietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 501–510. The Antioch Press, Yellow Springs, Ohio

    Google Scholar 

  • Brunisholz RA, Suter F and Zuber H (1984) The light-harvesting polypeptides of Rhodospirillum rubrum: I. The amino acid sequence of the second light-harvesting polypeptide B880-? (B879-?) of Rs. rubrum S1 and the carotenoideless mutant G-9+. Aspects of the molecular structure of the two light-harvesting polypeptides B880-? (B870-?) and B880-? (B870-?) and of the antenna complex B880 (B870) from Rs. rubrum. Biol Chem Hoppe-Seyler 365: 675–688

    CAS  Google Scholar 

  • Brunisholz RA, Jay F, Suter F and Zuber H (1985) The light-harvesting polypeptides of Rhodopseudomonas viridis: the complete amino-acid sequences of B1015-?, B1015-? and B1015-?. Biol Chem Hoppe-Seyler 366: 87–98

    PubMed  CAS  Google Scholar 

  • Chen C-YA, Beatty JT, Cohen SN and Belasco JG (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell 52: 609–619

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P and Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48: 55–63

    Article  CAS  Google Scholar 

  • Corson GE, Nagashima KVP, Matsuura K, Sakuragi Y, Wettasinghe R, Qin H, Allen R and Knaff DB (1999) Genes encoding light-harvesting and reaction center proteins from Chromatium vinosum. Photosynth Res 59: 39–52

    Article  CAS  Google Scholar 

  • Cullen PJ, Kaufman CK, Bowman WC and Kranz RG (1997) Characterization of the Rhodobacter capsulatus housekeeping RNA polymerase: in vitro transcription of photosynthesis and other genes. J Biol Chem 272: 27266–27273

    Article  PubMed  CAS  Google Scholar 

  • DeHoff BS, Lee JK, Donohue TJ, Gumport RI and Kaplan S (1988) In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator. J Bacteriol 170: 4681–4692

    PubMed  CAS  Google Scholar 

  • Dörge B, Klug G, Gad'on N, Cohen SN and Drews G (1990) Effects on the formation of antenna complex B870 of Rhodobacter capsulatus by exchange of charged amino acids in the N-terminal domain of the ? and ? pigment-binding proteins. Biochemistry 29: 7754–7758

    Article  PubMed  Google Scholar 

  • Fathir I, Tanaka K, Yoza K, Kojima A, Kobayashi M, Wang Z-Y, Lottspeich F and Nozawa T (1997) The genes coding for the L, M, and cytochrome subunits of the photosynthetic reaction center from the thermophilic purple sulfur bacterium Chromatium tepidum. Photosynth Res 51: 71–82

    Article  CAS  Google Scholar 

  • Fathir I, Ashikaga M, Tanaka K, Katano T, Nirasawa T, Kobayashi M, Wang Z-Y and Nozawa T (1998) Biochemical and spectral characterization of the core light harvesting complex 1 (LH1) from the thermophilic purple sulfur bacterium Chromatium tepidum. Photosynth Res 58: 193–202

    Article  CAS  Google Scholar 

  • Gomelsky M and Kaplan S (1995) Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol 177: 1634–1637

    PubMed  CAS  Google Scholar 

  • Heck C, Rothfuchs R, Jäger A, Rauhut R and Klug G (1996) Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Mol Microbiol 20: 1165–1178

    PubMed  CAS  Google Scholar 

  • Hoopes BC and McClure WR (1987) Strategies in regulation of transcription initiation. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M and Umberger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology, first edition, pp 1231–1240. American Society for Microbiology, Washington

    Google Scholar 

  • Klug G, Adams CW, Belasco J, Doerge B and Cohen SN (1987) Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic stem-loop region of the Rhodobacter capsulatus puf operon. EMBO J 6: 3515–3520

    PubMed  CAS  Google Scholar 

  • Lee JK, DeHoff BS, Donohue TJ, Gumport RI and Kaplan S (1989) Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant. J Biol Chem 264: 19354–19365

    PubMed  CAS  Google Scholar 

  • Mechler B and Oelze J (1978a) Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D: I. The influence of growth conditions. Arch Microbiol 118: 91–97

    Article  Google Scholar 

  • Mechler B and Oelze J (1978b) Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D: II. Structural and functional differences. Arch Microbiol 118: 99–108

    Article  CAS  Google Scholar 

  • Mechler B and Oelze J (1978c) Differentiation of the photosynthetic apparatus of Chromatium vinosum, strain D: III. Analyses of spectral alterations. Arch Microbiol 118: 109–114

    Article  CAS  Google Scholar 

  • Nagashima KVP, Matsuura K, Ohyama S and Shimada K (1994) Primary structure and transcription of genes encoding B870 and photosynthetic reaction center proteins from Rubrivivax gelatinosus. J Biol Chem 269: 2477–2484

    PubMed  CAS  Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K and Matsuura K (1997a) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KVP, Matsuura K, Wakao N, Hiraishi A and Shimada K (1997b) Nucleotide sequences of genes coding for photosynthetic reaction centers and light-harvesting proteins of Acidiphilium rubrum and related aerobic acidophilic bacteria. Plant Cell Physiol 38: 1249–1258

    PubMed  CAS  Google Scholar 

  • Nagashima KVP, Sakuragi Y, Shimada K and Matsuura K (1998) Comparative analysis of the primary structure of the reaction center-bound cytochrome subunit in purple bacteria. Photosynth Res 55: 349–355

    Article  CAS  Google Scholar 

  • Nozawa T, Ohta M, Hatano M, Hayashi H and Shimada K (1985) Sequence homology and structural similarity among B870 (B890) polypeptides of purple photosynthetic bacteria and the mode of bacteriochlorophyll binding. Chem Lett 343-346

  • Platt T (1986) Transcriptional termination and the regulation of gene expression. Ann Rev Biochem 55: 339–372

    Article  PubMed  CAS  Google Scholar 

  • Ponnampalam SN and Bauer CE (1997) DNA binding characteristics of CrtJ: a redox-responding repressor of bacteriochlorophyll, carotenoid, and light-harvesting-II gene expression in Rhodobacter capsulatus. J Biol Chem 272: 18391–18396

    Article  PubMed  CAS  Google Scholar 

  • Rauhut R and Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23: 353–370

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (eds) (1989) Molecular Cloning: a Laboratory Manual, second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S and Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 12: 5463–5467.

    Article  Google Scholar 

  • Shine J and Dalgarno L (1974) The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 4: 1342–1346

    Article  Google Scholar 

  • Stanssens P, Remaut E and Fiers W (1986) Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell 44: 711–718.

    Article  PubMed  CAS  Google Scholar 

  • Stiehle H, Cortez N, Klug G and Drews G (1990) A negatively charged N terminus in the ? polypeptide inhibits formation of light-harvesting complex I in Rhodobacter capsulatus. J Bacteriol 172: 7131–7137

    PubMed  CAS  Google Scholar 

  • Thornber JP, Trosper TL and Strouse CE (1978) Bacteriochlorophyll in vivo: relationship of spectral forms to specific membrane components. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 133–160. Plenum Press, New York

    Google Scholar 

  • Viale AM, Kobayashi H and Akazawa T (1989) Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes. J Bacteriol 171: 2391–2400

    PubMed  CAS  Google Scholar 

  • Wagner-Huber R, Brunisholz RA, Bissig I, Frank G, Suter F and Zuber H (1992) The primary structure of the antenna polypeptides of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. Eur J Biochem 205: 917–925

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of the three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282: 833–845

    Article  PubMed  CAS  Google Scholar 

  • Wiessner C, Dunger I and Michel H (1990) Structure and transcription of the genes encoding the B1015 light-harvesting complex ? and ? subunits and the photosynthetic reaction center L, M, and cytochrome c subunits from Rhodopseudomonas viridis. J Bacteriol 172: 2877–2887

    PubMed  CAS  Google Scholar 

  • Yanish-Perron C, Vieira J and Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119

    Article  Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability. In: Scheer H (ed) Chlorophylls, pp 627–703. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Zuber H and Cogdell RJ (1995) Structure and organization of purple bacterial antenna complxes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 315-348. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Zuker M and Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9: 133–148

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakiko Nagashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, S., Shimada, K., Matsuura, K. et al. Transcription of three sets of genes coding for the core light-harvesting proteins in the purple sulfur bacterium, Allochromatium vinosum . Photosynthesis Research 74, 269–280 (2002). https://doi.org/10.1023/A:1021280104053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021280104053

Navigation