Skip to main content
Log in

Aqueous Solubilities, Infinite Dilution Activity Coefficients and Octanol–Water Partition Coefficients of Tricyclic Analogs of Acyclovir

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubilities of tricyclic analogs of acyclovir have been determined in water at 25, 35, and 45°C and in octanol, water-saturated octanol, and octanol-saturated water at 25°C. Octanol-water partition coefficients were determined at 25°C. Melting temperatures and molar enthalpies of fusion were measured. Activity coefficients in water, octanol, and in aqueous octanol solutions were determined and are discussed. The effect of hydrophilic and hydrophobic substituents in the tricyclic analogs on their thermodynamic properties are discussed. The standard Gibbs energy of transfer between the saturated phases were found to correlate with known values of the melting point of the solvents and the solubilities of the solute. For a number of the compounds examined, correlations between the minimum inhibitory concentration against the herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), thymidine kinase-deficient (TK) strains of VZV and \(\Delta G_{{\text{W}} \to {\text{0}}}^0 ;\Delta G_{{\text{tr}}}^0\) were established. Detailed conclusions have been derived concerning the relationships between the structure and the thermodynamic parameters of the compounds examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (Wiley, New York, 1979).

    Google Scholar 

  2. F. G. Topliss, Quantitative Structure Activity Relationships of Drugs (Academic Press, New York, 1983).

    Google Scholar 

  3. A. Leo, C. Hansch, and D. Elkins, Chem. Rev. 71, 525 1971.

    Google Scholar 

  4. H. Fujiwara, Yong-Zhong Da, K. Ito, T. Takagi, and Y. Nishioka, Bull. Chem. Soc. Jpn. 64, 3770 (1991).

    Google Scholar 

  5. C. Yamagami, K. Iwasaki, and A. Ishikawa, Chem. Pharm. Bull. 45, 1653 (1997).

    Google Scholar 

  6. Yong-Zhong Da, K. Ito, and H. Fujiwara, J. Med. Chem. 35, 3382 (1992).

    Google Scholar 

  7. B. Golankiewicz, T. Ostrowski, G. Andrei, R. Snoeck, and E. De Clercq, J. Med. Chem. 37, 3187 (1994).

    Google Scholar 

  8. J. Czaplicki, T. Bohner, A.-K. Habermann, G. Folkers, and A. Milon, J. Biomol. NMR 8, 261 (1996).

    Google Scholar 

  9. J. Boryski and B. Golankiewicz, Nucleosides, Nucleotides 8, 529 (1989).

    Google Scholar 

  10. J. Boryski, B. Golankiewicz, and E. De Clercq, J. Med. Chem. 31, 1351 (1988).

    Google Scholar 

  11. J. Boryski, B. Golankiewicz, and E. De Clercq, J. Med. Chem. 34, 2380 (1991).

    Google Scholar 

  12. S. I. Sandler, Chemical and Engineering Thermodynamics, 2nd ed. (Wiley New York, 1989), p. 408.

    Google Scholar 

  13. J. M. Prausnitz, R. N. Lichenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice-Hall, Englewood Cliffs, New Jersey 1986).

    Google Scholar 

  14. A. Kristl and G. Vesnaver, J. Chem. Soc. Faraday Trans. 91, 995 (1995).

    Google Scholar 

  15. J. H. Hildebrand and R. L. Scott, Regular Solutions, (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  16. N. R. Draper, H. Smith, Applied Regression Analysis (Wiley, New York, 1973), p. 459.

    Google Scholar 

  17. J. H. Smith, C. Hansch, and M. M. Ames, J. Pharm. Sci. 64, 599 (1975).

    Google Scholar 

  18. N. P. Franks, M. N. Abraham, and W. R. Lieb, J. Pharm. Sci. 82, 466 (1993).

    Google Scholar 

  19. M. Iwahashi, Y. Hayashi, N. Hachiya, H. Matsuzawa, and H. Kobayashi, J. Chem. Soc. Faraday Trans. 89, 707 (1993).

    Google Scholar 

  20. B. C. Lippold and M. S. Adel, Arch. Pharm. 305, 417 (1972).

    Google Scholar 

  21. A. J. Dallas and P. W. Carr, J. Chem. Soc. Perkin Trans. 2, 2155 (1992).

    Google Scholar 

  22. S. H. Yalkowsky and S. Banerjee, Aqueous Solubility (Marcel Dekker, New York, 1992).

    Google Scholar 

  23. A. Kristl, J. Chem. Soc. Faraday Trans. 92, 1721 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielenkiewicz, W., Golankiewicz, B., Perlovich, G.L. et al. Aqueous Solubilities, Infinite Dilution Activity Coefficients and Octanol–Water Partition Coefficients of Tricyclic Analogs of Acyclovir. Journal of Solution Chemistry 28, 731–745 (1999). https://doi.org/10.1023/A:1021720128725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021720128725

Navigation