Skip to main content
Log in

Influence of Gonadal Steroids on Brain Corticosteroid Receptors: A Minireview

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sex differences exist in the functioning of the two brain corticosteroid receptor systems. Ovarian steroid replacement alters receptor mRNA expression, receptor binding capacities, and receptor affinity. The abundance of both mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) message can be reduced by estrogen. Progesterone is able to partially antagonize the action of estrogen and to induce MR transcription. The effect of estrogen on receptor binding capacity is more modest than its transcriptional actions. Estrogen decreases MR binding more reliably than it does GR. Progesterone has high affinity for the MR and can substantially reduce MR affinity for corticoids. Androgen apparently regulates corticoid receptor transcription but may not affect binding capacity. Estrogen and androgen are both more potent in regulating pituitary-adrenal function than would be suggested by their actions on receptor binding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Evans, R. M., and Arriza, J. L. 1989. A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron 2:1105–1120.

    Google Scholar 

  2. Carson-Jurica, M. A., Schrader, W. T., and O'Malley, B. W. 1990. Steroid receptor family: structure and functions. Endocr. Rev. 11:201–220.

    Google Scholar 

  3. Canny, B. J. 1990. Hippocampal glucocorticoid receptors and the regulation of ACTH secretion. Mol. Cell. Endocrinol. 71:C35-C38.

    Google Scholar 

  4. de Kloet, E. R., Oitzl, M. S., and Joëls, M. 1993. Functional implications of brain corticosteroid receptor diversity. Cell. Mol. Neurobiol. 13:433–455.

    Google Scholar 

  5. Bradbury, M. J., Akana, S. F., and Dallman, M. F. 1994. Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo-pituitary-adrenal axis during the diumal trough and peak: evidence for a nonadditive effect of combined receptor occupation. Endocrinology 134:1286–1296.

    Google Scholar 

  6. Trapp, T., Rupprecht, R., Castrén, M., Reul, J. M. H. M., and Hosboer, F. 1994. Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron 13:1–20.

    Google Scholar 

  7. De Kloet, E. R., and McEwen, B. S. 1976. Differences between cytosol receptor complexes with corticosterone and dexamethasone in hippocampal tissue from rat brain. Biochim. Biophys. Acta 421:124–132.

    Google Scholar 

  8. Anderson, N. S., and Fanestil, D. D. 1976. Corticosteroid receptors in rat brain: evidence for an aldosterone receptor. Endocrinology 98:676–684.

    Google Scholar 

  9. Olpe, H-R., and McEwen, B. S. 1976. Glucocorticoid binding to receptor-like proteins in rat brain and pituitary: ontogenetic and experimentally induced changes. Brain Res. 105:121–128.

    Google Scholar 

  10. MacLusky, N. J., Turner, B. B., and McEwen, B. S. 1977. Corticosteroid binding in rat brain and pituitary cytosols: resolution of multiple binding components by polyacrylamide get based isolectric focusing. Brain Res. 130:564–571.

    Google Scholar 

  11. Turner, B. B., and Weaver, D. A. 1985. Sexual dimorphism of glucocorticoid binding in rat brain. Brain Res. 343:16–23.

    Google Scholar 

  12. Turner, B. B. 1992. Sex differences in the binding of type I and type II corticosteroid receptors in rat hippocampus. Brain Res. 581:229–236.

    Google Scholar 

  13. Turner, B. B., and Ansari, M. S. 1989. Sex differences in type I corticosteroid receptors in rat hypothalamus. Neurosci. Abstr. 15:716 [Abstract].

    Google Scholar 

  14. Turner, B. B., Baker, E. D., and Ansari, M. S. 1987. Sex difference in nuclear uptake of low dose 3H-corticosterone by limbic structures in rat. Neurosci. Abstr. 13:1107 [Abstract].

    Google Scholar 

  15. Koch, B., Sakly, M., and Lutz-Butcher, B. 1982. Specific mineralocorticoid receptors in the hippocampus of spontaneously hypertensive (SH) rats. I. Evidence for a sex difference. Horm. Metabol. Res. 14: 166.

    Google Scholar 

  16. McCormick, C. M., Smythe, J. W., and Beers, D. 1994. Sex differences in type I corticosteroid receptor binding in selective brain areas of rats. Pages 431–433, in de Kloet, E. R., Azmitia, E. C., and Landfield, P. W. (eds.), Brain Corticosteroid Receptors, Ann. N.Y. Acad. Sci., Vol. 746, New York Academy of Sciences, New York.

    Google Scholar 

  17. Turner, B. B. 1990. Sex differences in glucocorticoid binding in rat pituitary. Life Sci. 46: 1399–1406.

    Google Scholar 

  18. MacLusky, N. J., Yuan, H., Elliott, J., and Brown, T. J. 1996. Sex differences in corticosteroid binding in the rat brain: an in vitro autoradiographic study. Brain Res. 708:71–81.

    Google Scholar 

  19. Sarrieau, A., Rostene, W., Antakly, T., Aitken, D. H., and Meaney, M. J. 1987. Modulation of glucocorticoid binding capacity in selected brain regions and pituitary of adrenalectomized rats by various steroids. Neurosci. Abstr. 13:725 [Abstract].

    Google Scholar 

  20. Turner, B. B. 1984. Application of a glucocorticoid receptor exchange assay to brain tissues: Some cautions. Neurosci. Abstsr. 10:479 [Abstract].

    Google Scholar 

  21. Ferrini, M., Magariños, A. M., and De Nicola, A. F. 1990. Oestrogens down-regulate type I but not type II adrenal corticoid receptors in rat anterior pituitary. J. Steroid Biochem. 35:671–677.

    Google Scholar 

  22. Ferrini, M., and De Nicola, A. F. 1991. Estrogens up-regulate type I and type II glucocorticoid receptors in brain regions from ovariectomized rats. Life Sci. 48:2593–2601.

    Google Scholar 

  23. Turner, B. B., Holsclaw, L. I., and Xu, L. 1990. Affinity of the mineralocorticoid receptor in hippocampus is independent of in vivo progesterone levels. Neurosci. Abstr. 16:1070 [Abstract].

    Google Scholar 

  24. Burgess, L. H., and Handa, R. J. 1992. Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131:1261–1269.

    Google Scholar 

  25. Carey, M. P., Deterd, C. H., de Koning, J., Helmerhorst, F., and de Kloet, E. R. 1995. The influence of ovarian steroids on hypothalamic-pituitary-regulation in the female rat. J. Endocrinol. 144: 311–321.

    Google Scholar 

  26. Ferrini, M., González, and De Nicola, F. 1993. Estradiol increases glucocorticoid binding and glucocorticoid induction of ornithine decarboxylase in the rat spinal cord. Life Sci. 52:677–685.

    Google Scholar 

  27. Handa, R. J., Nunley, K. M., Lorens, S. A., Louie, J. P., McGivern, R. F., and Bollnow, M. R. 1994. Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and foot shock stressors. Physiol. Behav. 55: 117–124.

    Google Scholar 

  28. Turner, B. B., Ansari, M. S., Ansari, T., Holtsclaw, L. I., and Chen, X. 1991. Developmental vs. activational effects of gonadal steroids on the binding parameters of corticosteroid receptors in the hippocampus of male vs. female rats. Neurosci. Abstr. 17:1315 [Abstract].

    Google Scholar 

  29. Viau, V., and Meaney, M. J. 1996. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J. Neurosci. 16:1866–1876.

    Google Scholar 

  30. Landau, R. L., Bergenstal, D. M., Lugibihl, K., and Kascht, M. E. 1955. The metabolic effect of progesterone in man. J. Clin. Endocrinol. Metab. 15:1194–1215.

    Google Scholar 

  31. Rafestin-Oblin, M. E., Couette, B., Barlet-Bas, C., Cheval, L., Viger, A., and Doucet, A. 1991. Renal action of progesterone and 18-substituted derivatives. Am. J. Physiol. 260:828–832.

    Google Scholar 

  32. Rupprecht, R., Reul, J. M. H. M., van Steensel, B., Spengler, D., Söder, Berning, B., Holsboer, F., and Damm, K. 1993. Pharmacological and functional characterization of human mineralocorticoid and glucocorti-coid receptor ligands. Eur. J. Pharmacol.-Mol. Pharmacol. 247:145–154.

    Google Scholar 

  33. Arriza, J. L., Weinberger, C., Glasser, T., Handelin, B. L., Housman, D. E., and Evans, R. M. 1987. Cloning of the human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237: 268–275.

    Google Scholar 

  34. Funder, J. W. 1996. Mineralocorticoid receptors in the central nervous system. J. Ster. Biochem. Mol. Biol. 56:179–183.

    Google Scholar 

  35. Souque, A., Fagart, J., Couette, B., Davioud, E., Sobrio, F., Marquet, A., and Rfafestin-Oblin, M-E. 1995. The mineralocorticoid activity of progesterone derivatives depends on the nature of the C18 substituent. Endocrinology 136:5651–5658.

    Google Scholar 

  36. McEwen, B. S., de Kloet, R., and Wallach, G. 1976. Interactions in vivo and in vitro of corticosteroid and progesterone with cell nuclei and soluble macromolecules from rat brain regions and pituitary. Brain Res. 105:129–136.

    Google Scholar 

  37. Kontula, K., Paavonen, T., Luukkaines, T., and Andersson, L. C. 1982. Binding of progestins to the glucocorticoid receptor: correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochem. Pharmacol. 32:1511–1518.

    Google Scholar 

  38. Chader, G. J., and Reif-Lehrer, L. 1972. Hormonal effects on the neural retina: corticoid uptake, specific binding and structural requirements for the induction of glutamine synthetase. Biochim. Biophys. Acta 264:186–196.

    Google Scholar 

  39. Xu, X., Hoebeke, J., and Bjömtoorp, P. 1990. Progestin binds to the glucocorticoid receptor and mediates antiglucocorticoid effect in rat precursor cells. J. Steroid Biochem 36:465–471.

    Google Scholar 

  40. Suthers, M. B., Pressley, L. A., and Funder, J. W. 1976. Glucocorticoid receptors: evidence for a second, non-glucocorticoid binding site. Endocrinology 99:260–269.

    Google Scholar 

  41. Svec, F., Teubner, V., and Tate, D. 1989. Location of the second steroid-binding site on the glucocorticoid receptor. Endocrinology 125:3103–3108.

    Google Scholar 

  42. Svec, F., Yeakley, J., and Harrison III, R. W. 1980. Progesterone enhances glucocorticoid dissociation from the AtT-20 cell glucocorticoid receptor. Endocrinology 107:566–572.

    Google Scholar 

  43. Gray, H. E., and Luttge, W. G. 1980. Equilibrium and kinetic investigation of mouse brain glucocorticoid binding sites. Endocrinology 108Suppl.: 921.

    Google Scholar 

  44. von der Ahe, D., Janich, S., Scheidereit, C., Renkawitz, R., Schütz, G., and Beato, M. 1985. Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313:706–709.

    Google Scholar 

  45. Munck, A., and Leung, K. 1977. Glucocorticoid receptors and mechanisms of action. Pages 311–397, in Pasqualini, J. R. (ed.), Receptors and Mechanism of Action of Steroid Hormones, Part II, Marcel Dekker, New York.

    Google Scholar 

  46. Archer, T. K., Zaniewski, E., Moyer, M. L., and Nordeen, S. K. 1994. The differential capacity of glucocorticoids and progestins to alter chromatin structure and induce gene expression in human breast cancer cells. Mol. Endocrinology 8:1154–1162.

    Google Scholar 

  47. Ahima, R. S., Lawson, A. N. L., Osei, S. Y. S., and Harlan, R. E. 1992. Sexual dimorphism in regulation of type II corticosteroid receptor immuno-reactivity in the rat hippocampus. Endocrinology 131:1409–1416.

    Google Scholar 

  48. Bamberger, C. M., Bamerger, A-M., de Castro, M., and Chrousos, G. P. 1995. Glucocorticoid Receptor β, a potential endogenous inhibitor of glucocorticoid action in humans. J. Clin. Invest. 95: 2435–2441.

    Google Scholar 

  49. Kwak, S. P., Patel, P. D., Thompson, R. C., Akil, H., and Watson, S. J. 1993. 5′-Heterogeneity of the mineralocorticoid receptor messenger ribonucleic acid: differential expression and regulation of splice variants within the rat hippocampus. Endocrinology 133: 2344–2350.

    Google Scholar 

  50. Castrén, M., and Damm, K. 1993. A functional promoter directing expression of a novel type of rat mineralocorticoid receptor mRNA in Brain. J. Neuroendocrinology 5:461–466.

    Google Scholar 

  51. Peiffer, A., LaPointe, B., and Barden, N. 1991. Hormonal regulation of type II glucocorticoid receptor messenger ribonucleic acid in rat brain. Endocrinology 129:2166–2174.

    Google Scholar 

  52. Patchev, V. K., and Almeida, O. F. X. 1996. Gonadal steroids exert facilitating and “buffering” effects on glucocorticoid-mediated transcriptional regulation of corticotropin-releasing hormone and corticosteroid receptor genes in rat brain. J. Neurosci. 16:7077–7084.

    Google Scholar 

  53. Burgess, L. H., and Handa, R. J. 1993. Estrogen-induced alterations in the regulation of mineralocorticoid and glucocorticoid receptor messenger RNA expression in the female rat anterior pituitary and brain. Mol. Cell. Neurosci. 4:191–198.

    Google Scholar 

  54. Redei, E., Li, L., Halasz, I., McGivern, R. F., and Aird, F. 1994. Fast glucocorticoid feedback inhibition of ACTH section in the ovariectomized rat: effect of chronic estrogen and progesterone. Neuroendocrinology 60:113–123.

    Google Scholar 

  55. Peiffer, A., and Barden, N. 1987. Estrogen-induced decrease of glucocorticoid receptor messenger ribonucleic acid concentration in rat anterior pituitary gland. Mol. Endocrinol. 1:435–440.

    Google Scholar 

  56. Pfeiffer, A., and Barden, N. 1988. Glucocorticoid receptor gene expression in rat pituitary gland intermediate lobe following ovariectomy. Mol. Cell. Endocrinol. 55:115–120.

    Google Scholar 

  57. Castrén, M., Patchev, V. K., Almeida, O. F. X., Holsboer, F., Trapp, T., and Castrén, E. 1995. Regulation of rat mineralocorticoid receptor expression in neurons by progesterone. Endocrinology 136:3800–3806.

    Google Scholar 

  58. Stone, J. D., Crofton, J. T., and Share, L. 1992. Sex differences in central cholinergic and angiotensinergic control of vasopressin release. Am. J. Physiol. 263:R1030-R1034.

    Google Scholar 

  59. Kitay, J. I. 1961. Sex differences in adrenal cortical secretion in the rat. Endocrinology 68:818–824.

    Google Scholar 

  60. Glenister, D. W., and Yates, F. E. 1961. Sex difference in the rate of disappearance of corticosterone-4-C14 from plasma of intact rats: further evidence for the influence of hepatic Δ4-steroid hydrogenase activity on adrenal cortical function. Endocrinology 68: 747–758.

    Google Scholar 

  61. Gala, R. R., and Westphal, U. 1965. Corticosteroid-binding globulin in the rat: studies on the sex difference. Endocrinology 77: 841–851.

    Google Scholar 

  62. Polderman, K. H., Gooren, L. J., and van der Veen, E. A. 1994. Testosterone administration increases adrenal response to adrenocorticotrophin. Clin. Endocrinol. 40:595–601.

    Google Scholar 

  63. Critchlow, V., Liebelt, R. A., Bar-Sela, M., Mountcastle, W., and Lipscomb, H. S. 1963. Sex differences in resting pituitary-adrenal function in the rat. Am. J. Physiol. 205:807–815.

    Google Scholar 

  64. Horrocks, P. M., Jones, A. F., Ratcliffe, W. A., Holder, G., White, A., Holder, R., Ratcliffe, J. G., and London, D. R. 1990. Patterns of ACTH and cortisol pulsatility over twenty-four hours in normal males and females. Clin. Endocrinol. 32:127–134.

    Google Scholar 

  65. Raps, D., Barthe, P. L., and Desaulles, P. A. 1971. Plasma and adrenal corticosterone levels during the different phases of the sexual cycle in normal female rats. Experientia 27:339–340.

    Google Scholar 

  66. Viau, V., and Meaney, M. J. 1991. Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 129:2503–2511.

    Google Scholar 

  67. Bohler, H. C. L., Zoeller, R. T., King, J. C., Rubin, B. S., Weber, R., and Merriam, G. R. 1990. Corticotropin releasing hormone mRNA is elevated on the afternoon of proestrus in the parvocellular paraventricular nuclei of the female rat. Mol. Brain Res. 8: 259–262.

    Google Scholar 

  68. Atkinson, H. C., and Waddell, B. J. 1995. The hypothalamic-pituitary-adrenal axis in rat pregnancy and lactation: circadian variation and interrelationship of plasma adrenocorticotropin and corticosterone. Endocrinology 136:513–520.

    Google Scholar 

  69. Kitay, J. I. 1963. Pituitary-adrenal function in the rat after gonadectomy and gonadal hormone replacement. Endocrinology 73: 253–260.

    Google Scholar 

  70. Coyne, M. D., and Kitay, J. I. 1969. Effect of ovariectomy on pituitary secretion of ACTH. Endocrinology 85:1097–1102.

    Google Scholar 

  71. Keller-Wood, M., Silbiger, J., and Wood, C. E. 1988. Progesterone attenuates the inhibition of adrenocorticotropin responses by cortisol in nonpregnant ewes. Endocrinology 123:647–651.

    Google Scholar 

  72. Handa, R. J., Burgess, L. H., Kerr, J. E., and O'Keefe, J. A. 1994. Gonadal steroid hormone receptors and sex differences in the hyppothalamo-pituitary-adrenal axis. Horm. Behav. 28:464–476.

    Google Scholar 

  73. Oitzl, M. S., van Haarst, A. D., Sutanto, W., and de Kloet, E. R. 1995. Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology 20:655–675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, B.B. Influence of Gonadal Steroids on Brain Corticosteroid Receptors: A Minireview. Neurochem Res 22, 1375–1385 (1997). https://doi.org/10.1023/A:1022023207326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022023207326

Navigation