Skip to main content
Log in

Snow Mountain Virus Genome Sequence and Virus-like Particle Assembly

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Snow Mountain virus (SMV) belongs to the Norovirus genus of the Caliciviridae family. SMV is a genogroup II (GII) reference strain of human enteric caliciviruses associated with epidemic gastroenteritis. In this study, the positive sense RNA genome sequence of SMV was determined to be 7,537 nucleotides in length excluding the 3′ polyadenylated tract. The genome is organized into three open reading frames typical of caliciviruses in the Norovirus genus. Pairwise sequence alignments showed SMV ORF1 is highly conserved with other genogroup II noroviruses, and most closely related to GII strains Melksham and Hawaii virus. In addition, comparative sequence analyses indicated that SMV is likely a recombinant norovirus. VP1/VP2 proteins self-assembled into virus-like particles (VLPs) when expressed in insect cells by a recombinant baculovirus. Characterization of one clone that expressed VP1, but failed to assemble into VLPs, identified histidine residue 91 as important for particle assembly under standard conditions of expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fankhauser R.L., Noel J.S., Monroe S.S., Ando T., and Glass R.I., Molecular epidemiology of ‘Norwalk-like viruses’ in out-breaks of gastroenteritis in the United States. J Infect Dis 178, 1571-1578, 1998.

    Google Scholar 

  2. Koopmans M., Vinje J., de Wit M., Leenen I., van der Poel W., and van Duynhoven Y., Molecular epidemiology of human enteric caliciviruses in The Netherlands. J Infect Dis 181(Suppl. 2), S262-S269, 2000.

    Google Scholar 

  3. Noel J.S., Fankhauser R.L., Ando T., Monroe S.S., and Glass R.I., Identification of a distinct common strain of ‘Norwalk-like viruses’ having a global distribution. J Infect Dis 179, 1334-1344, 1999.

    Google Scholar 

  4. Dedman D., Laurichesse H., Caul E.O., and Wall P.G., Surveillance of small round structured virus (SRSV) infection in England and Wales, 1990-5. Epidemiol Infect 121, 139-149, 1998.

    Google Scholar 

  5. Kapikian A. and Estes M.K., The rotaviruses, in Fields Virology, 3rd edn. 1996, pp. 783-810.

  6. Clarke I.N., and Lambden P.R., Organization and expression of calicivirus genes. J Infect Dis 181(Suppl. 2), S301-S316, 2000.

    Google Scholar 

  7. Jiang X., Wang M., Graham D.Y., and Estes M.K., Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66, 6527-6532, 1992.

    Google Scholar 

  8. Wirblich C., Thiel H.J., and Meyers G., Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 70, 7974-7983, 1996.

    Google Scholar 

  9. Glass P.J., White L.J., Ball J.M., Leparc-Goffart I., Hardy M.E., and Estes M.K., Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol, 74, 6581-6591, 2000.

    Google Scholar 

  10. Morens D.M., Zweighaft R.M., Vernon T.M., Gary G.W., Eslien J.J., Wood B.T., Holman R.C., and Dolin R., A waterborne outbreak of gastroenteritis with secondary person-to-person spread. Association with a viral agent. Lancet, 1, 964-966, 1979.

    Google Scholar 

  11. Dolin R., Reichman R.C., Roessner K.D., Tralka T.S., Schooley R.T., Gary W., and Morens D., Detection by immune electron microscopy of the Snow Mountain agent of acute viral gastroenteritis. J Infeet Dis 146, 184-189, 1982.

    Google Scholar 

  12. Lew J.F., Kapikian A.Z., Valdesuso J., and Green K.Y., Molecular characterization of Hawaii virus and other Norwalk-like viruses: evidence for genetic polymorphism among human caliciviruses. J Infect Dis 170, 535-542, 1994.

    Google Scholar 

  13. Wang J., Jiang X., Madore H.P., Gray J., Desselberger U., Ando T., Seto Y., Oishi I., Lew J.F., and Green K.Y., Sequence diversity of small, round-structured viruses in the Norwalk virus group. J Virol 68, 5982-5990, 1994.

    Google Scholar 

  14. Ando T., Mulders M.N., Lewis D.C., Estes M.K., Monroe S.S., and Glass R.I., Comparison of the polymerase region of small round structured virus strains previously classified in three antigenic types by solid-phase immune electron microscopy. Arch Virol 135, 217-226, 1994.

    Google Scholar 

  15. Hardy M.E., Kramer S.F., Treanor J.J., and Estes M.K., Human calicivirus genogroup II capsid sequence diversity revealed by analyses of the prototype Snow Mountain agent. Arch Virol 142, 1469-1479, 1997.

    Google Scholar 

  16. King A.D. and Green K.Y., Sequence analysis of the gene encoding the capsid protein of the Snow Mountain human calicivirus. Virus Genes, 15, 5-7, 1997.

    Google Scholar 

  17. Lambden P.R., Caul E.O., Ashley C.R., and Clarke I.N., Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 259, 516-519, 1993.

    Google Scholar 

  18. Jiang X., Wang M., Wang K., and Estes M.K., Sequence and genomic organization of Norwalk virus. Virology, 195, 51-61, 1993.

    Google Scholar 

  19. Hardy M.E. and Estes M.K., Completion of the Norwalk virus genome sequence. Virus Genes 12, 287-290, 1996.

    Google Scholar 

  20. Schreier E., Doring F., and Kunkel U., Molecular epidemiology of outbreaks of gastroenteritis associated with small round structured viruses in Germany in 1997/98. Arch Virol 145, 443-453, 2000.

    Google Scholar 

  21. Someya Y., Takeda N., and Miyamura T., Complete nucleotide sequence of the chiba virus genome and functional expression of the 3C-like protease in Escherichia coli. Virology 278, 490-500, 2000.

    Google Scholar 

  22. Dingle K.E., Lambden P.R., Caul E.O., and Clarke I.N., Human enteric Caliciviridae: the complete genome sequence and expression of virus-like particles from a genetic group II small round structured virus. J Gen Virol, 76(pt 9), 2349-2355, 1995.

    Google Scholar 

  23. Seah E.L., Marshall J.A., and Wright P.J., Open reading frame 1 of the Norwalk-like virus Camberwell: completion of sequence and expression in mammalian cells. J Virol 73, 10531-10535, 1999.

    Google Scholar 

  24. Green K.Y., Belliot G., Taylor J.L., Valdesuso J., Lew J.F., Kapikian A.Z., and Lin F.Y., A predominant role for Norwalk-like viruses as agents of epidemic gastroenteritis in Maryland nursing homes for the elderly. J Infect Dis 185, 133-146, 2002.

    Google Scholar 

  25. Pletneva M.A., Sosnovtsev S.V., and Green K.Y., The genome of hawaii virus and its relationship with other members of the caliciviridae. Virus Genes 23, 5-16, 2001.

    Google Scholar 

  26. Mendez I.I., Hermann L.L., Hazelton P.R., and Coombs K.M., A comparative analysis of freon substitutes in the purification of reovirus and, calicivirus. J Virol Meth 90, 59-67, 2000.

    Google Scholar 

  27. Thompson J.D., Higgins D.G., and Gibson T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680, 1994.

    Google Scholar 

  28. Siepel A.C., Halpern A.L., Macken C., and Korber B.T., A computer program designed to screen rapidly for HIV type 1 intersubtype recombinant sequences. AIDS Res Hum Retroviruses 11, 1413-1416, 1995.

    Google Scholar 

  29. Hardy M.E., White L.J., Ball J.M., and Estes M.K., Specific proteolytic cleavage of recombinant Norwalk virus capsid protein. J Virol 69, 1693-1698, 1995.

    Google Scholar 

  30. Kozak M., Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res 9, 5233-5262, 1981.

    Google Scholar 

  31. Liu B., Clarke I.N., and Lambden P.R., Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 70, 2605-2610, 1996.

    Google Scholar 

  32. Boniotti B., Wirblich C., Sibilia M., Meyers G., Thiel H.J., and Rossi C., Identification and characterization of a 3C-like protease from rabbit hemorrhagic disease virus, a calicivirus. J Virol 68, 6487-6495, 1994.

    Google Scholar 

  33. Liu B.L., Viljoen G.J., Clarke I.N., and Lambden P.R., Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J Gen Virol 80(pt 2), 291-296, 1999.

    Google Scholar 

  34. Hardy M.E., Crone T.L., Brower J.E., and Ettayebi K., Substrate specificity of the Norwalk virus 3C-like protease. Virus Res 89, 29-39, 2002.

    Google Scholar 

  35. Pfister T., and Wimmer E., Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J Virol 75, 1611-1619, 2001.

    Google Scholar 

  36. Marin M.S., Casais R., Alonso J.M., and Parra F., ATP binding and ATPase activities associated with recombinant rabbit hemorrhagic disease virus 2C-like polypeptide. J Virol 74, 10846-10851, 2000.

    Google Scholar 

  37. Dunham D.M., Jiang X., Berke T., Smith A.W., and Matson D.O., Genomic mapping of a calicivirus VPg. Arch Virol 143, 2421-2430, 1998.

    Google Scholar 

  38. Sosnovtsev S.V. and Green K.Y., Identification and Genomic Mapping of the ORF3 and VPg Proteins in Feline Calicivirus Virions. Virology 277, 193-203, 2000.

    Google Scholar 

  39. Wirblich C., Sibilia M., Boniotti M.B., Rossi C., Thiel H.J., and Meyers G., 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity. J Virol 69, 7159-7168, 1995.

    Google Scholar 

  40. Sosnovtsev S.V., Sosnovtseva S.A., and Green K.Y., Cleavage of the feline calicivirus capsid precursor is mediated by a virus-encoded proteinase. J Virol 72, 3051-3059, 1998.

    Google Scholar 

  41. Vazquez A.L., Martin Alonso J.M., Casais R., Boga J.A., and Parra F., Expression of enzymatically active rabbit hemorrhagic disease virus RNA-dependent RNA polymerase in Escherichia coli. J Virol 72, 2999-3004, 1998.

    Google Scholar 

  42. Green J., Vinje J., Gallimore C.I., Koopmans M., Hale A., Brown D.W., Clegg J.C., and Chamberlain J., Capsid protein diversity among Norwalk-like viruses. Virus Genes 20, 227-236, 2000.

    Google Scholar 

  43. Seah E.L., Gunesekere I.C., Marshall J.A., and Wright P.J., Variation in ORF3 of genogroup 2 Norwalk-like viruses. Arch Virol 144, 1007-1014, 1999.

    Google Scholar 

  44. Vinje J., Green J., Lewis D.C., Gallimore C.I., Brown D.W., and Koopmans M.P., Genetic polymorphism across regions of the three open reading frames of ‘Norwalk-like viruses’. Arch Virol 145, 223-241, 2000.

    Google Scholar 

  45. Green K.Y., Kapikian A.Z., Valdesuso J., Sosnovtsev S., Treanor J.J., and Lew J.F., Expression and self-assembly of recombinant capsid protein from the antigenically distinct Hawaii human calicivirus. J Clin Microbiol 35, 1909-1914, 1997.

    Google Scholar 

  46. Jiang X., Matson D.O., Ruiz-Palacios G.M., Hu J., Treanor J., and Pickering L.K., Expression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol 33, 1452-1455, 1995.

    Google Scholar 

  47. Leite J.P., Ando T., Noel J.S., Jiang B., Humphrey C.D., Lew J.F., Green K.Y., Glass R.I., and Monroe S.S., Characterization of Toronto virus capsid protein expressed in baculovirus. Arch Virol 141, 865-875, 1996.

    Google Scholar 

  48. Jiang X., Zhong W., Kaplan M., Pickering L.K., and Matson D.O., Expression and characterization of Sapporo-like human calicivirus capsid proteins in baculovirus. J Virol Meth 78, 81-91, 1999.

    Google Scholar 

  49. Hale A.D., Crawford S.E., Ciarlet M., Green J., Gallimore C., Brown D.W., Jiang X., and Estes M.K., Expression and self-assembly of Grimsby virus: antigenic distinction from Norwalk and Mexico viruses. Clin Diagn Lab Immunol 6, 142-145, 1999.

    Google Scholar 

  50. Laurent S., Vautherot J.F., Madelaine M.F., Le Gall G., and Rasschaert D., Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection. J Virol 68, 6794-6798, 1994.

    Google Scholar 

  51. Guo M., Chang K.O., Hardy M.E., Zhang Q., Parwani A.V., and Saif L.J., Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J Virol 73, 9625-9631, 1999.

    Google Scholar 

  52. Prasad B.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., and Estes M.K., X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287-290, 1999.

    Google Scholar 

  53. Neill J.D., Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins. Virus Res 24, 211-222, 1992.

    Google Scholar 

  54. Bertolotti-Ciarlet A., White L.J., Chen R., Prasad B.V., and Estes M.K., Structural requirements for the assembly of Norwalk virus-like particles. J Virol 76, 4044-4055, 2002.

    Google Scholar 

  55. Baric R.S., Yount B., Lindesmith L., Harrington P.R., Greene S.R., Tseng F.C., Davis N., Johnston R.E., Klapper D.G., and Moe C.L., Expression and self-assembly of norwalk virus capsid protein from venezuelan equine encephalitis virus replicons. J Virol 76, 3023-3030, 2002.

    Google Scholar 

  56. Jiang X., Espul C., Zhong W.M., Cuello H., and Matson D.O., Characterization of a novel human calicivirus that may be a naturally occurring recombinant. Arch Virol 144, 2377-2387, 1999.

    Google Scholar 

  57. Kirkegaard K. and Baltimore D., The mechanism of RNA recombination in poliovirus. Cell 47, 433-443, 1986.

    Google Scholar 

  58. Duggal R., Cuconati A., Gromeier M., and Wimmer E., Genetic recombination of poliovirus in a cell-free system. Proc Natl Acad Sci USA 94, 13786-13791, 1997.

    Google Scholar 

  59. Duggal R. and Wimmer E., Genetic recombination of poliovirus in vitro and in vivo: temperature-dependent alteration of crossover sites. Virology 258, 30-41, 1999.

    Google Scholar 

  60. Nagy P.D., Zhang C., and Simon A.E., Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J 17, 2392-2403, 1998.

    Google Scholar 

  61. Nagy P.D., Pogany J., and Simon A.E., RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO J 18, 5653-5665, 1999.

    Google Scholar 

  62. Nagy P.D. and Simon A.E., New insights into the mechanisms of RNA recombination. Virology 235, 1-9, 1997.

    Google Scholar 

  63. Nagy P.D. and Simon A.E., In vitro characterization of late steps of RNA recombination in turnip crinkle virus. I. Role of motifl-hairpin structure. Virology 249, 379-392, 1998.

    Google Scholar 

  64. Nagy P.D., Zhang C., and Simon A.E., Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J 17, 2392-2403, 1998.

    Google Scholar 

  65. Nagy P.D. and Simon A.E., In vitro characterization of late steps of RNA recombination in turnip crinkle virus. II. The role of the priming stem and flanking sequences. Virology 249, 393-405, 1998.

    Google Scholar 

  66. Mathews D.H., Sabina J., Zuker M., and Turner D.H., Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911-940, 1999.

    Google Scholar 

  67. Zuker M., Mathews D.H., and Turner D.H., Algorithms and thermodynamics for RNA secondary stucture prediction: a practical guide, in RNA Biochemistry and Biotechnology, 1999, pp. 11-43.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele E. Hardy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lochridge, V.P., Hardy, M.E. Snow Mountain Virus Genome Sequence and Virus-like Particle Assembly. Virus Genes 26, 71–82 (2003). https://doi.org/10.1023/A:1022334323013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022334323013

Navigation