Skip to main content
Log in

Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi are a multifaceted group of mutualistic symbionts that are common to terrestrial ecosystems. The interaction between AM fungi and plant roots is of environmental and agronomic importance. Understanding the molecular changes within the host plant upon AM fungal colonisation is a pre-requisite to a greater understanding of the mechanisms underlying the interaction. Differential mRNA display was conducted on leaf tissue of tomato plants colonised and non-colonised by the AM fungus Glomus mosseae and five putative differentially regulated cDNAs were identified. All cDNAs isolated shared high sequence similarity to known plant genes. Differential screening was initially used to establish whether the cDNAs were differentially expressed. Semi-quantitative RT-PCR was used to establish gene expression patterns for all five clones within leaf and root tissue of mycorrhizal and non-mycorrhizal colonised tomato plants. Differential regulation was observed for all five cDNAs. Down-regulation within the leaf tissue of mycorrhizal plants was observed for 4 out of the 5 cDNAs with an up-regulation observed only for one. Tissue specific regulation was observed for several cDNAs, with down-regulation observed in mycorrhizal leaf tissue and up-regulation observed within mycorrhizal root tissue as compared to non-mycorrhizal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, M.F. 1982. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91: 191–196.

    Google Scholar 

  • Allen, M.F., Moore, T.S. and Christensen, M. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhiza. I. Cytokinin increases in the host plant. Can J Bot 58: 371–374.

    Google Scholar 

  • Allen, M.F., Moore, T.S. and Christensen, M. 1982. Phytohormone changes in Bouteloua gracilis infected by vesicular arbuscular mycorrhizae. II. Altered levels of giberellin-like substances and absicic acid in the host plant. Can J Bot 60: 468–471.

    Google Scholar 

  • Augé, R.M., Stodola, A.J., Brown, M.S. and Bethlenfalvay, G.J. 1992. Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol 120: 117–125.

    Google Scholar 

  • Azcón-Aguilar, C. and Barea, J.M. 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza 6: 457–464.

    Google Scholar 

  • Bildusas, I.J., Dixon, R.K., Pfleger, F.L. and Stewart, E.L. 1986. Growth, nutrition, and gas exchange of Bromus inermis inoculated with Glomus fasiculatum. New Phytol 102: 303–311.

    Google Scholar 

  • Brommonschenkel, S. H., Frary, A., Frary, A. and Tanksley, S. D. 2000. The broad spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root knot nematode resistance gene Mi. MPMI 13: 1130–1138.

    Google Scholar 

  • Brown, M.S. and Bethlenfalvay, G.J. 1987. The Glycine-Glomus-Bradyrhizobium symbiosis. VI. Photosynthesis in nodulated, mycorrhizal, or N-and P-fertilised soybean plants. Plant Physiol 85: 120–123.

    Google Scholar 

  • Burleigh, S.H. 2001. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. Plant Sci 160: 899–904

    Google Scholar 

  • Burleigh, S.H. and Harrison, M.J. 1997. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonisation by vesicular arbuscular (VAM) and to phosphate nutrition. Plant Mol Biol 34: 199–208.

    Google Scholar 

  • Burleigh, S.H. and Harrison, M.J. 1998a. Characterisation of the Mt4 gene from Medicago truncatula. Gene 216: 47–53.

    Google Scholar 

  • Burleigh, S.H. and Harrison, M.J. 1998b. Mt4, a phosphorous starvation inducible cDNA from Medicago truncatula, which is down-regulated by phosphorous fertilisation and arbuscular mycorrhizal colonisation. In, Phosphorous in plant biology: Regulatory roles in molecular cellular, organismic and ecosystem processes, Vol 19 (JP Lynch and J Deikman eds.) Rockville MD. American Society of Plant Physiologists, pp 359–360.

    Google Scholar 

  • Burleigh, S.H. and Harrison, M.J. 1999. The down regulation ofMt-4 like genes by phosphate fertilisation occurs systematically and involves phosphate translocation to the root. Plant Physiol 119: 241–248.

    Google Scholar 

  • Chiou, T., Liu, H. and Harrison, M.J. 2001. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 253: 281–293.

    Google Scholar 

  • Dallman, M.J. and Porter, A.C.G. 1994. Semi-quantitative PCR for the analysis of gene expression. In: M.J. McPherson, P Quirke and GR Taylor (Eds.), PCR, A practical approach, Volume 1. Oxford University Press, New York, USA, pp. 215–224.

    Google Scholar 

  • Danneburg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch, H.J. and Bothe, H. 1992. Influence of vesicular arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol 141: 33–39.

    Google Scholar 

  • David, R., Itzhaki, H., Ginzberg, H., Gafni, Y., Galili, S., Kalpulnik, Y. 1998. Suppression of tobacco basic chitinase gene expression in response to colonisation by the arbuscular mycorrhizal fungus Glomus intraradices. MPMI 11: 489–497.

    Google Scholar 

  • Davies, F.T., Potter, J.R. and Linderman, R.G. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf Pconcentration – response in gas exchange and water relations. Physiol Plant 87: 45–53.

    Google Scholar 

  • Dehne, H.W. 1982. Interaction between vesicular arbuscular mycorrhizal fungi and plant pathogens. Phytopath 72: 1115–1119.

    Google Scholar 

  • Delp, G., Smith, S.E. and Barker, S.J. 2000. Isolation by differential display of three partial cDNAs potentially coding for proteins from the VA mycorrhizal Glomus intraradices. Mycol Res 104: 293–300.

    Google Scholar 

  • Drüge, U. and Schönbeck, F. 1992. Effects of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141: 40–48.

    Google Scholar 

  • Folkertsma, R. T., Spassova, M. I., Prins, M., Stevens, M. R., Hille, J. and Goldbach, R. W. 1999. Construction of a bacterial artificial chromosome (BAC) Library of Lycopersicon esculentum cv.Stevens and its application to physically map the Sw-5 locus. Mol Breed 5: 197–207.

    Google Scholar 

  • Franken, P. and Gnadinger, F. 1994. Analysis of parsley arbuscular endomycorrhiza: Infection development and mRNA levels of defense related genes. MPMI 7: 612–620.

    Google Scholar 

  • Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A. and Gianinazzi, S. 1996. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133: 45–57.

    Google Scholar 

  • Gemma, J.N., Koske, R.E., Roberts, E.M., Jackson, N. and De Antonis, K. 1997. Mycorrhizal fungi improve drought resistance in creeping bentgrass. J Turfgrass Sci 73: 15–29.

    Google Scholar 

  • Gernns, H., von Alten, H. and Poehling, H.M. 2001. Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen – is a compensation possible? Mycorrhiza 11: 237–243.

    Google Scholar 

  • Gollotte, A., Gianinazzi-Pearson, V., Giovannetti, M., Sbrana, C., Avio, L. and Gianinazzi, S. 1993. Cellular localisation and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a' locus a' mutant of Pisum sativum (L.). Planta, 191: 112–122.

    Google Scholar 

  • Gollotte, A., Cordier, C., Lemoine, M.C., Gianinazzi-Pearson, V. 1997. Role of fungal wall components in interactions between endomycorrhizal symbionts. In Intertaxonomic Combination and Symbiotic Adaptation (Eds. H.E.A. Schenk, R.G. Hermenn, K.W. Jeon, N.E. Muller, W. Schwemmler) pp 412–428. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Goicoechea, N., Antolin, M.C. and Sánchez-Díaz, M. 1997. Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192: 261–268.

    Google Scholar 

  • Grace, C. and Stribley, D.P. 1991. A safer procedure for root staining of vesicular arbuscular mycorrhizal fungi. Mycol Res 95: 1160–1162.

    Google Scholar 

  • Haake, V., Geiger, M., Walch-Liu, P., Engels, C., Zrenner, R. and Stitt, M. 1999. Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. Plant J 17: 479–489.

    Google Scholar 

  • Haake, V., Zrenner, R., Sonnewald, U. and Stitt, M. 1998. A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch and inhibits growth of potato plants. Plant J 14: 147–157.

    Google Scholar 

  • Hardie, K. 1985. The effect of removal of extra-radical hyphae on water uptake by vesicular arbuscular mycorrhizal plants. New Phytol 101: 677–684.

    Google Scholar 

  • Harrier, L.A., Wright, F. and Hooker, J.E. 1998. Isolation of the 3-phosphoglycerate kinase gene from the arbuscular mycorrhizal fungus Glomus mosseae Nicol. and Gerd. Gerdemann and Trappe. Curr Genet 34: 386–392.

    Google Scholar 

  • Harrison, M.J. and Dixon, R.A. 1993. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal association in roots of Medicago truncatula. MPMI 6: 643–654.

    Google Scholar 

  • Harrison, M.J. and Dixon, R.A. 1994. Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during the interaction between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6: 9–20.

    Google Scholar 

  • Herbers, K., Meuwly, P., Frommer, W.P., Metraux, J.P.and Sonnewald, U. 1996a. Systemic acquired resistance mediated by the ectopic expression of invertase. Possible hexose sensing in the secretory pathway. Plant Cell 8: 793–803.

    Google Scholar 

  • Herbers, K., Meuwly, P., Metraux, J.P. and Sonnewald, U. 1996b. Salicyclic acid-dependent induction of pathogenesis related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett 397: 239–244.

    Google Scholar 

  • Herbers, K. and Sonnewald, U. 1998. Altered gene expression brought about by inter-and intracellularly formed hexoses and its possible implications for plant-pathogen interactions. J Plant Res 111: 323–328.

    Google Scholar 

  • Hermsmeier, D., Mazarei, M. and Baum, T.J. 1998. Differential display analysis of the early compatible interaction between soybean and the soybean cyst nematode. MPMI 11: 1258–1263.

    Google Scholar 

  • Hoffmann, K., Qiu, W. P. and Moyer, J.W. 2001. Overcoming hostand pathogen mediated resistance in tomato and tobacco maps to the M RNA of tomato spotted wilt virus. MPMI 14: 242–249.

    Google Scholar 

  • Iglesias, RG., Nicolas, G. and Babiano, M.J. 1999. Characterisation of a cDNA encoding a ribosomal protein (rpL37a) from Pseudotsuga menziesii. Plant Physiol 1198: 1148.

    Google Scholar 

  • Jakobsen, I., Abbott, L.K. and Robson, A.D. 1992a. External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorous inflow into roots. New Phytol 120: 371–380.

    Google Scholar 

  • Jakobsen, I., Abbott, L.K. and Robson AD. 1992b. External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120: 509–516.

    Google Scholar 

  • Kalpulnik Y., Volpin H., Itzhaki H., Ganon D., Galili S., David R., Shaul O., Elad Y., Chet I. and Okon Y. 1996. Suppression of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol 133: 59–64.

    Google Scholar 

  • Kloth, R.H. and Turley, R.B. 1999. Homologue of the ribosomal protein RL37a (Accession No AF127042) from upland cotton (Gossypium hirsutum L.) Plant Physiol 120: 933

    Google Scholar 

  • Krajinski, F., Martin-Laurent, F., Gianinazzi, S., Gianinazzi-Pearson, V. and Franken, P 1998. Cloning and analysis of Psam2, a gene from Pisum sativum L. regulated in symbiotic arbuscular mycorrhiza and pathogenic root-fungus interactions. Physiol Mol Plant Path 52: 287–307.

    Google Scholar 

  • Lambais, M.R. and Mehdy, M.C. 1993. Suppression of endochitinase ?-1-3-endoglucanase, and chalcone isomerase expression in bean VAM roots under different soil phosphate conditions. MPMI 1: 75–83.

    Google Scholar 

  • Lambais, M.R. and Mehdy, M.C. 1995. Differential expression of defense-related genes in arbuscular mycorrhiza. Can J Bot 75: S533–S540.

    Google Scholar 

  • Lambais, M.R. and Mehdy, M.C. 1998. Spatial distribution of chitinases and ?-1-3-glucanase transcripts in bean arbuscular mycorrhizal roots under low and high soil phosphate conditions. New Phytol 140: 33–42.

    Google Scholar 

  • Lange, J., Xie, Z., Broughton, W.J., Vögeli-Lange. R. and Boller, T. 1999. A gene encoding a receptor like protein kinase in the roots of common bean is differentially regulated in response to pathogens, symbionts and nodulation factors. Plant Sci 142: 133–145.

    Google Scholar 

  • Lapopin, L., Gianinazzi-Pearson, V. and Franken, P. 1999. Comparative differential RNA display analysis of arbuscular mycorrhiza in Pisum sativum wild type and a mutant defective in late stage development. Plant Mol Biol 41: 669–677.

    Google Scholar 

  • Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.

    Google Scholar 

  • Liang, P., Averboukh, L. and Pardee, A.B. 1993. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimisation. Nucl Acids Res 21: 3269–3275.

    Google Scholar 

  • Liang, P., Zhu,W., Zhang, X., Guo, Z., O'Connell, R.P., Averboukh, L., Wang, F. and Pardee, A.B. 1994. Differential display using one-based oligo-dT primers. Nucl Acids Res 22: 5763–5764

    Google Scholar 

  • Liu, H., Trieu, A.T., Blaylock, L.A and Harrison, M.J. 1998. Cloning and characterisation of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonisation by AMF. MPMI 11: 14–22

    Google Scholar 

  • Martin-Laurent, F., Gianinazzi, S. and Franken, P. 1995. Screening of cDNA fragments generated by differential RNA display. Anal Biochem 228: 182–184.

    Google Scholar 

  • Martin-Laurent, F., Tuinen, D. van, Dumas-Gaudot, E., Gianinazzi-Pearson, V., Gianinazzi, S. and Franken, P. 1997. Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis regulated plant gene. Mol Gen Genet 256: 37–44.

    Google Scholar 

  • Mohr, U., Lange, J., Boller, T., Wiemken, A. and Vögeli-Lange, R. 1998. Plant defence genes are induced in the pathogenic interaction between bean roots and Fusarium solani, but not in the symbiotic interaction with the arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 138: 589–598.

    Google Scholar 

  • Niehaus, K., Kapp, D. and Puhler, A. 1993. Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS-I)-deficient Rhizobium meliloti mutant. Plant J. 190: 415–425.

    Google Scholar 

  • Ohmachi, T., Fukuoka, R., Kimura, Y., Asada, Y. and Ennis, H.L. 1998. The characterisation of two Dictyostelium discoideum genes encoding ribosomal proteins with sequence similarity to rat L27a and L37a. Biosci Biotech Biochem 62: 2008–2015.

    Google Scholar 

  • Parniske, M., Schmidt, P.E. Kosch, P. and Muller, P. 1994. Defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. MPMI 7: 631–638.

    Google Scholar 

  • Pearson, W.R. 1990. Rapid and Sensitive Sequence Comparison with FASTP and FASTA. Meth Enzymol 183: 63–98.

    Google Scholar 

  • Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448.

    Google Scholar 

  • Pendleton, R.L. 2000. Pre-inoculation by an arbuscular mycorrhizal fungus enhances male reproductive output of Cucurbita foetidissima. Int J Plant Sci 161: 683–689.

    Google Scholar 

  • Philips, D.A., Kalpulnik, Y., le Guellec, D., Galili, S., Volpin, H., Chet, I. and Okon, Y. 2000. The defence response elicited by the pathogen Rhizoctonia solani is suppressed by colonisation of the AM fungus Glomus intraradices. Plant Sci 160: 925–932.

    Google Scholar 

  • Poulton, J.L., Bryla, D., Koide, R.T. and Stephenson, A.G. 2002. Mycorrhizal infection and high soil phosphorous improve vegetative growth and the female and male functions in tomato. New Phytol 154: 255–264.

    Google Scholar 

  • Poulton, J.L., Koide, R.T. and Stephenson, A.G. 2001. Effects of mycorrhizal infection and soil phosphorous availability on in vitro and in vivo pollen performance in Lycopersicon esculentum (Solanaceae). Am J Bot 88: 1786–1793.

    Google Scholar 

  • Requena, N., Fuller, P. and Franken, P. 1999. Molecular characterisation of GmFOX2 an evolutionary highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during the interaction with rhizobacteria. MPMI 12: 934–942.

    Google Scholar 

  • Requena, N., Mann, P. and Franken, P. 2000. A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrhizal fungus Glomus mosseae. Protoplasma 212: 89–98.

    Google Scholar 

  • Rosewarne, G.A., Barker, S.J., Smith, S.E., Smith, A.G. and Schactman, D.P. 1999. A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorous uptake from a vesicular arbuscular mycorrhizal fungus. New Phytol 144: 507–516.

    Google Scholar 

  • Roussel, H., Tuinen, D. van, Franken, P., Gianinazzi, S. and Gianinazzi-Pearson, V. 2001. Signalling between arbuscular mycorrhizal fungi and plants: Identification of a gene during early interactions by differential RNA display analysis. Plant Soil 232: 13–19.

    Google Scholar 

  • Ruiz–Lozano, J.M., Azcón, R. and Palma, J.M. 1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134: 327–333.

    Google Scholar 

  • Ruiz-Lozano, J.M., Collados, C., Barea, J.M. and Azcón, R. 2001. Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52: 2241–2242.

    Google Scholar 

  • Salzer, P., Bonamoni, A., Beyer, K., Vögeli-Lange, R., Aeschbacher, R.A., Lange, J., Wiemken, A., Kim, D., Cook, DR. and Boller, T. 2000. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation and pathogen infection. MPMI 13: 763–777.

    Google Scholar 

  • Schussler, A., Schwarzott, D. and Walker, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105: 1413–1421.

    Google Scholar 

  • Shaul, O., Galili, S., Volpin, H., Ginzberg, H., Elad, Y., Chet, I. and Kalpulnik, Y. 1999. Mycorrhiza induced changes in disease severity and PR protein expression in tobacco leaves. MPMI 12: 1000–1007.

    Google Scholar 

  • Smith, S.E. and Read, D.J. 1997. Mycorrhizal symbiosis. 2nd edition. Academic Press, California.

    Google Scholar 

  • Spassova, M. I., Prins, T.W., Folkertsma, R. T., Klein-Lankhorst, R.M., Hille, J., Goldbach, R. W. and Prins, M. 2001. The tomato gene Sw-5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed 7: 151–161.

    Google Scholar 

  • Tahiri-Alaoui, A. and Antoniw, J.F. 1996. Cloning of genes associated with the colonisation of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae. Agronomie 16: 699–707.

    Google Scholar 

  • Taylor, J. and Harrier, L.A. 2000. A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (Red Raspberry). Plant Soil 225: 53–61.

    Google Scholar 

  • Taylor, J. and Harrier, L.A. 2001. A comparison of development and mineral nutrition of micropropagated Fragaria ? ananassa cv. Elvira (Strawberry) when colonised by nine species of arbuscular mycorrhizal fungi. Appl Soil Ecol 18: 205–215

    Google Scholar 

  • Taylor, M., Mad arif, S,A., Pearce, S.R., Davies, H., Kumar, A. and George, L.A. 1993. Expression and sequence analysis of cDNA's induced during the early stages of tuberization in different organs of the potato plant. Plant Mol Biol 20: 641–651.

    Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. 1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by analysis tools. Nucl Acids Res 25: 4876–4882.

    Google Scholar 

  • Trouvelot, A., Kough, J.L. and Gianinazzi-Pearson, V. 1986. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionelle. In: V. Gianinazzi-Pearson, S. Gianinazzi (eds.) Physiological and genetic aspects of Mycorrhizae. INRA Press, Paris, pp. 217–221.

    Google Scholar 

  • Vögeli-Lange, R., Bürckert, N., Boller, T. and Wiemken, A. 1996. Rapid selection and classification of positive clones generated by mRNA differential display. Nucl Acids Res 24: 1385–1386.

    Google Scholar 

  • Yamada, S., Komori, T., Hashimoto A., Kuwata S., Imaseki H. and Kubo T. 2000. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci 154: 61–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy A. Harrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J., Harrier, L.A. Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae . Plant Mol Biol 51, 619–629 (2003). https://doi.org/10.1023/A:1022341422133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022341422133

Navigation