Skip to main content
Log in

Inflammation in Traumatic Brain Injury: Role of Cytokines and Chemokines

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A traumatic injury to the adult mammalian central nervous system (CNS), such as a stab wound lesion, results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. The roles of cytokines and growth factors released locally by the damaged endogenous cells are recognized in controlling the cellular changes that occur following CNS injury. However, the role of chemokines, a novel class of chemoattractant cytokines, is only recently being studied in regulating inflammatory cell invasion in the injured/diseased CNS (1). The mRNAs for several chemokines have been shown to be upregulated in experimental allergic encephalomyelitis (EAE), an inflammatory demyelinating disease of the CNS, but chemokine expression in traumatic brain injury has not been studied in detail. Astrocytes have been demonstrated to participate in numerous processes that occur following injury to the CNS. In particular, astrocytic expression of cytokines and growth factors in the injured CNS has been well reviewed (2). Recently a few studies have detected the presence of chemokines in astrocytes following traumatic brain injury (3,4). These studies have suggested that chemokines may represent a promising target for future therapy of inflammatory conditions. This review summarizes the events that occur in traumatic brain injury and discusses the roles of resident and non-resident cells in the expression of growth factors, cytokines and chemokines in the injured CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ransohoff, R. M., Glabinski, A., and Tani, M. 1996. Chemokines in immune-mediated inflammation of the central nervous system. Cytokines and Growth Factor Reviews 7:35-46.

    Article  Google Scholar 

  2. Rudge, J. S. 1993. Astrocyte-Derived Neurotrophic Factors. In: S. Murphy, ed., Astrocytes: Pharmacology and Function, Academic Press, Inc., San Diego, pp. 267-305.

    Google Scholar 

  3. Berman, J. W., Guida M. P., Warren J., Amat J., Brosnan, C.F. 1996. Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J. Immunol 156:3017-23.

    PubMed  Google Scholar 

  4. Glabinski, A. R., Balasingam, V., Tani, M., Kunkel, S. L., Strieter, R. M., Yong, V. W., Ransohoff, R. M. 1996. Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J. Immunol 156:4363-4368.

    PubMed  Google Scholar 

  5. Logan, A., and Berry, M. 1993. Transforming growth factor β1 & basic fibroblast growth factor in the injured CNS. Trends Pharm Sci 14:337-343.

    PubMed  Google Scholar 

  6. Lotan, M., and Schwartz, M. 1994. Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J. 8:1026-1033.

    PubMed  Google Scholar 

  7. Eng, L. F., and Ghirnikar, R.S. 1994. GFAP and astrogliosis. Brain Pathol 4:229-237.

    PubMed  Google Scholar 

  8. Eddleston, M., and Mucke, L. 1993. Molecular profile of reactive astrocytes, implications for their role in neurologic diseases. Neuroscience 54:15-36.

    Article  PubMed  Google Scholar 

  9. Hopkins, S. J., and Rothwell, N. J. 1995. Cytokines and the nervous system. I: Expression and recognition. Trends in Neurosci 18:83-8.

    Article  Google Scholar 

  10. Benveniste, E. N. 1993. Astrocyte-microglia interactions. In: Murphy S (ed): “Astrocytes: Pharmacology and Function.” San Diego: Academic Press, Inc., pp. 355-382.

    Google Scholar 

  11. Balasingam, V., and Yong, V. W. 1996. Attenuation of Astroglial Reactivity by Interleukin-10. J. Neurosci. 16:2945-2955.

    PubMed  Google Scholar 

  12. DeKosky, S. T., Styren, S. D., O'Malley, M. E., Gross, J. R., Kochanek, P., Marion, D., Evans, C. H., and Robbins, P. D. 1996. Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Annals Neurol 39:123-7.

    Google Scholar 

  13. Kiefer, R., Lindholm, D., and Kreutzberg, G. W. 1993. Interleukin-6 and transforming growth factor-beta 1 mRNAs are induced in rat facial nucleus following motoneuron axotomy. European J Neurosci 5:775-781.

    Google Scholar 

  14. Sawada, M., Suzumura, A., and Marunouchi, T. 1995. Cytokine network in the central nervous system and its roles in growth and differentiation of glial and neuronal cells. International J Dev Neurosci 13:253-64.

    Article  Google Scholar 

  15. Eng, L. F., Ghirnikar, R. S., and Lee, Y. L. 1996. Inflammation in EAE: Role of Chemokine/Cytokine expression by resident and infiltrating cells. Neurochem Res 21:511-525.

    PubMed  Google Scholar 

  16. Balasingam, V., Tejada-Berges, T., Wright, E., Bouckova, R., and Yong, V. W. 1994. Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14:846-56.

    PubMed  Google Scholar 

  17. Nieto-Sampedro, M., Lewis, E. R., Cotman, C. W., Manthorpe, M., Skaper, S. D., Barbin, G., Longo, F. M., and Varon, S. 1982. Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science 217:860-861.

    PubMed  Google Scholar 

  18. Yong, V.W. 1996. Cytokines, Astrogliosis and Neurotrophism following CNS Trauma. In Cytokines and the CNS. RM Ransohoff, En Benveniste (eds) CRC Press Inc. pp 309.

  19. Logan, A., Frautschy S. A., Gonzalez, A. M., Sporn, M. B., and Baird, A. 1992. Enhanced expression of transforming growth factor β-1 in the rat brain after a localized cerebral injury. Brain Res 587:216-25.

    PubMed  Google Scholar 

  20. Finklestein, S. P., Apostolides, P. J., Caday, C. G., Prosser, J., Philips, M. F., and Klagsbrun, M. 1988. Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res 460:253-9.

    PubMed  Google Scholar 

  21. Hou, Y. J., Yu, A. C. H., Garcia, J. M. R. Z., Aotaki-Keen, A., Lee, Y. L., Eng, L. F., Hjelmeland, L. J., and Menon, V. K. 1995. Astrogliosis in culture: IV. Effects of basic fibroblast growth factor. J. Neurosci. Res. 40:359-370.

    PubMed  Google Scholar 

  22. Johns, L. D., Flanders, K. C., Raanges, G. E., and Sriram, S. Successful treatment of experimental autoimmune encephalomyelitis with transforming growth factor-β-1 J. Immunol. (1991) 147:11792-1796.

    Google Scholar 

  23. Racke, M. K., Dhib-Jalbut, S., Cannella, B., Albert, P. S., Raine, C. S., and McFarlin, D. E. 1991. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor beta 1. J. Immunol., 146:3012-3017.

    PubMed  Google Scholar 

  24. Racke, M. K., Sriram, S., Carlino, J., Cannella, B., Raine, C. S., and McFarlin, D. E. 1993. Long term treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 2. J. Neuroimmunol., 46:175-183.

    PubMed  Google Scholar 

  25. Santambrogio, L., Hochwald, G. U., Saxena, B., Lev, C. H., Martz, J. E., Carlino, J. A., Ruddle, N. H., Palladino, M. A., Gold, L. I., and Thorbecke, G. J. 1993. Studies on the mechanisms by which transforming growth factor-β (TGF-β) protects against allergic encephalomyelitis. J. Immunol. 153:1116-1127.

    Google Scholar 

  26. Glabinski, A. R., Tani, M., Aras, S., Stoler, M. H., Tuohy, V. K., and Ransohoff, R. M. 1995. Regulation and function of central nervous system chemokines. Int J Dev Neurosci 13:153-65.

    PubMed  Google Scholar 

  27. Tanaka, Y., Adams, D. H., Hubscher, S., Hirano, H., Siebenlist, U., and Shaw, S. 1993. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature, 361:79-82.

    PubMed  Google Scholar 

  28. Murphy, P. 1994. The molecular biology of leukocyte chemoattractant receptors. Ann Rev. Immunol. 12:593-633.

    Article  Google Scholar 

  29. Horuk, R. 1994. Molecular properties of the chemokine receptor family. Trends in Pharmacol. Sci. 15:159-165.

    Article  Google Scholar 

  30. Ben-Baruch, A., Michiel, D. F., Oppenheim, J. J. 1995. Signals and receptors involved in recruitment of inflammatory cells. J. Biol. Chem. 270:11703-11706.

    PubMed  Google Scholar 

  31. Van Damme, J., Rampart, M., Conings, R., Decock, B., Van Osselaer, N., Willems, J., and Billiau, A. 1990. The neutrophil-activating proteins interleukin 8 and beta thromboglobulin: in vitro and in vivo comparison of NH2 terminally processed forms. European J. Immunol. 20:2113-2118.

    Google Scholar 

  32. Loetscher, M., Geiser, T., O'Reilly, T., Zwahlen, R., Baggiolini, M., and Moser, B. 1994. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem. 269:232-237.

    PubMed  Google Scholar 

  33. Nakagawa, H., Komorita, N., Shibata, F., Ikesue, A., Konishi, K., Fujioka, M., Kato, H. 1994. Identification of cytokine induced neutrophil chemoattractants (CINC), rat GRO/CINC-2 alpha and CINC-2 beta, produced by granulation tissue in culture: purification, complete amino acid sequences and characterization. Biochemical J. 301:545-550.

    Google Scholar 

  34. Wu, X., Wittwer, A. J., Carr, L. S., Crippes, B. A., DeLarco, J. E., and Lefkowith, J. B. 1994. Cytokine-induced neutrophil chemoattractant mediates neutrophil influx in immune complex glomerulonephritis in rat. J. Clinical Investigation 94:337-344.

    Google Scholar 

  35. Smoller, B. R., and Krueger, J. 1991. Detection of cytokine-induced protein gamma-immune protein-10 (gamma IP10) in atypical melanocytic proliferations. J. American Academy of Dermatology, 25:627-631.

    Google Scholar 

  36. Minty, A., Chalon, P., Guillemot, J. C., Kaghad, M., Liauzun, P., Magazin, M., Miloux, B., Minty, C., Raymond, P., Vita, N. et al 1993. Molecular cloning of the MCP-3 chemokine gene and regulation of its expression. Eur Cytokine Network 4:99-110.

    Google Scholar 

  37. Schmouder, R. L., Strieter, R. M., and Kunkel, S. L. 1993. Interferon gamma regulation of human renal cortical epithelial cell-derived monocyte chemotactic peptide-1. Kidney Int 44:43-49.

    PubMed  Google Scholar 

  38. Kuna. P., Reddigari, S. R., Schall, T. J., Rucinski, D., Sadick, M., and Kaplan, A. P. 1993. Characterization of the human basophil response to cytokines, growth factors, and histamine releasing factors of the intercrine/chemokine family. J Immunol 150:1932-43.

    PubMed  Google Scholar 

  39. Kawahara, R. S., Deng, Z. W., Denkinger, D. J., and Deuel, T. F. 1994. Role of serine/threonine protein kinases in the induction of JE, a platelet derived growth factor inducible gene. Biochem. Biophys. Res. Comm. 203:1815-20.

    PubMed  Google Scholar 

  40. Dahinden, C. A., Geiser, T., Brunner, T., von Tscharner, V., Caput, D., Ferrara, P., Minty, A., and Baggiolini, M. 1994. Monocyte chemotactic protein 3 is a most effective basophil-and eosinophil-activating chemokine. J. Exp. Med. 179:751-756.

    PubMed  Google Scholar 

  41. Luo, Y., Laning, J., and Dorf, M. E. 1993. Serologic analysis of a murine chemokine, TCA3. J. Immunol. 150:971-979.

    PubMed  Google Scholar 

  42. Wilson, S. D., Billings, P. R., D'Eustachio, P., Fournier, R. E., Geissler, E., Lalley, P. A., Burd, P. R., Housman, D. E., Taylor, B. A., and Dorf, M. E. 1990. Clustering of cytokine genes on mouse chromosome 11. J Exp Med 171:1301-1314.

    PubMed  Google Scholar 

  43. Taub, D. D., Conlon, K., Lloyd, A. R., Oppenheim, J. J., and Kelvin, D.J. 1993. Preferential migration of activated CD4+ and CD8+ T cells in resonse to MIP-1 alpha and MIP-1 beta. Science 260:355-358.

    PubMed  Google Scholar 

  44. Neote, K., DiGregorio, D., Mak, J.Y., Horuk, R., and Schall, T.J. 1993. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72:415-425.

    PubMed  Google Scholar 

  45. Schall, T. J., Bacon, K., Toy, K. J., and Goeddel, D. V. 1990. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 47:669-71.

    Article  Google Scholar 

  46. Godiska, R., Chantry, D., Dietsch, G. N., and Gray, P. W. 1995. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58:167-176.

    PubMed  Google Scholar 

  47. Rathanaswami, P., Hachicha, M., Sadick, M., Schall, T. J., and McColl, S. R. 1993. Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. J. Biol. Chem. 268:5834-5839.

    PubMed  Google Scholar 

  48. Bischoff, S. C., Krieger, M., Brunner, T., Rot, A., von Tscharner, V., Baggiolini, M., and Dahinden, C. A. 1993. RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Euro. J. Immunol. 23:761-767.

    Google Scholar 

  49. Meurer, R., Van Riper, G., Feeney, W., Cunningham, P., Hora, D. Jr, Springer, M. S., McIntyre, D. E., and Rosen, H. 1993. Formation of eosinophilic and monocytic intradermal inflammatory sites in the dog by injection of human RANTES but not human monocyte chemoattractant protein 1, human macrophage inflammatory protein 1 alpha or human interleukin 8. J. Exp. Med. 178:1913-1921.

    PubMed  Google Scholar 

  50. Tani, M., and Ransohoff, R. M. 1994. Do chemokines mediate inflammatory cell invasion of the central nervous system parenchyma? Brain Pathol. 4:135-143.

    PubMed  Google Scholar 

  51. Ransohoff, R. M., Hamilton, T. A., Tani, M., Stoler, M. H., Shick, H. E., Major, J. A., Estes, M. L., Thomas, D. M., and Tuohy, V. K. 1993. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. Faseb J. 7:592-600.

    PubMed  Google Scholar 

  52. Brosnan, C. F., Shafit-Zagardo, B., Aquino, D. A., and Berman, J. W. 1993. Expression of monocyte/macrophage growth factors and receptors in the CNS. Adv. Neurol. 59:349-361.

    PubMed  Google Scholar 

  53. Hulkower, K., Brosnan, C. F., Aquino, D. A., Cammer, W., Kulshrestha, S., Guida, M. P., Rapoport, D. A., and Berman, J. W. 1993. Expression of CSF-1, c-fms, & MCP-1 in the CNS of rats with EAE. J. Immunol. 150:2525-2533.

    PubMed  Google Scholar 

  54. Barna, B. P., Pettay, J., Barnett, G. H., Zhou, P., Iwasaki, K., and Estes, M. L. 1994. Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J. Neuroimmunol. 50:101-7.

    PubMed  Google Scholar 

  55. Hurwitz, A. A., Lyman, W. D., and Berman, J. W. 1995. Tumor necrosis factor α and transforming growth factor β upregulate astrocyte expression of monocyte chemoattractant protein-1. J. Neuroimmunol. 57:193-8.

    PubMed  Google Scholar 

  56. Karpus, W. J., Lukas, N. W., McRae, B. L., Strieter, R. M., Kunkel, S. L., and Miller, S. D. 1995. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155:5003-10.

    PubMed  Google Scholar 

  57. Murphy, G. M. Jr., Jia, X.-C., Song, Y., Ong, E., Shrivastava, R., Bocchini, V., Lee, Y. L., and Eng, L. F. 1995. Macrophage inflammatory protein 1-α mRNA expression in an immortalized microglial cell line and cortical astrocyte cultures. J. Neurosci. Res. 40:755-763.

    PubMed  Google Scholar 

  58. Noe, K. H., Fisher, S. N., Dhib-Jalbut, S. S., and Shin, M. L. 1996. Induction of cytokine RANTES by virus in astrocytes. J. Neurochem. 66:Supp S71D.

  59. Mathewson, A. J., and Berry, M. 1985. Observations on the astrocyte response to a cerebral stab wound in adult rats. Brain Res 327:61-69.

    PubMed  Google Scholar 

  60. Topp, K. S., Faddis, B. T., and Vijayan, V. K. 1989. Trauma induced proliferation of astrocytes in the brains of young and aged rats. Glia 2:201-211.

    PubMed  Google Scholar 

  61. Vijayan, V. K., Lee, Y. L., and Eng, L. F. 1990. Increase in glial fibrillary acidic protein following neural trauma. Mol. Chem. Neuropathol. 13:107-118.

    PubMed  Google Scholar 

  62. Norton, W. T., Aquino, D. A., Hozumi, I., Chiu, F. C., and Brosnan C. F. 1992. Quantitative aspects of reactive gliosis: a review. Neurochemical Res. 17:877-885.

    Google Scholar 

  63. Ghirnikar, R. S., Lee, Y. L., He, T. R., and Eng, L. F., 1996. Chemokine expression in rat stab wound brain injury. J. Neuroscience Research, 46:727-733.

    Google Scholar 

  64. Maxwell, W. L., Follows, R, Ashhurst, D. E., and Berry, M. 1990. The responses of the cerebral hemisphere of the rat to injury. I. The mature rat. Phil. Trans. R. Soc. Lond. B. 328:479-500.

    Google Scholar 

  65. Loo, D. T., Althoen, M. C., and Cotman, C. W. 1995. Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity. J. Neurosci. Res. 42:184-91.

    PubMed  Google Scholar 

  66. D'Amelio, F., Eng, L. F., and Gibbs, M. A. 1990. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system [see comments]. Glia 3:335-41.

    PubMed  Google Scholar 

  67. Pixley, S. R., and de Villis, J. 1984. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev. Brain Res. 15:201-209.

    Google Scholar 

  68. Dahl, D., Strocchi, P., and Bignami, A. 1982. Vimentin in the central nervous system. A study of the mesenchymal type intermediate filament protein in Wallerian degeneration and in postnatal rat development by two-dimensional gel electrophoresis. Differentiation 22:185-190.

    PubMed  Google Scholar 

  69. Schiffer, D., Giordana, M. T., Migheli, A., Giaccone, G., Pezzotta, S., and Mauro, A. 1986. Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain. Brain Res. 374:110-8.

    PubMed  Google Scholar 

  70. Schiffer, D., Giordana, M. T., Cavalla, P., Vigliani, M. C., and Attanasio, A. 1993. Immunohistochemistry of glial reaction after injury in the rats: Double stainings and markers of cell proliferation. Int. J. Dev. Neurosci. 11:269-280.

    PubMed  Google Scholar 

  71. Takamiya, Y., Kohsaka, S., Toya, S., Otani, M., and Tsukada, Y. 1988. Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats. Brain Res 466:201-10.

    PubMed  Google Scholar 

  72. Graeber, M. B., Streit, W. J., and Kreutzberg, G. W. 1988b. The microglial cytoskeleton: vimentin is localized within activated cells in situ. J. Neurocytol. 17:573-80.

    PubMed  Google Scholar 

  73. Schnitzer, J., Franke, W. W., and Schachner, M. 1981. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435-47.

    PubMed  Google Scholar 

  74. Stichel, C. C., and Muller, H. W. 1994. Extensive and long-lasting changes of glial cells following transection of the postcommissural fornix in the adult rat. Glia 10:89-100.

    PubMed  Google Scholar 

  75. Calvo, J. L., Carbonell, A. L., and Boya, J. 1991. Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats. Brain Res 566:333-6.

    PubMed  Google Scholar 

  76. Fernaud-Espinosa, I., Nieto-Sampedro, M., and Bovolenta, P. 1993. Differential activation of microglia and astrocytes in aniso-and isomorphic gliotic tissue. Glia, 8(4):277-91.

    PubMed  Google Scholar 

  77. Perry, V. H., Matyszak, M. K., and Fearn, S. 1993. Altered antigen expression of microglia in the aged rodent CNS. Glia 7:60-7.

    PubMed  Google Scholar 

  78. Moreno-Flares, M. T., Bovolenta, P., and Nieto-Sampedro, M. 1993. Polymorphonuclear Leukocytes in Brain Parenchyma After Injury and their interaction with purified astrocytes in culture. Glia 7:146-157.

    PubMed  Google Scholar 

  79. Holmin, S., Mathiesen, T., Shetye, J., and Biberfeld, P. 1995. Intracerebral inflammatory response to experimental brain contusion. Acta Neurochirurgica 132:110-9.

    PubMed  Google Scholar 

  80. Ling, E. A., and Wong, W. C. 1993. The original and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9-18.

    PubMed  Google Scholar 

  81. Jacque, C., Tchelingerian, J. L., 1994. [New concepts on the role of cytokines in the central nervous system]. Revue Neurologique 150:748-56.

    PubMed  Google Scholar 

  82. Benveniste, E. N., and Benos, D. J. 1995. TNF-α-and IFN-gamma-mediated signal transduction pathways: effects on glial cell gene expression and function. Faseb Journal 9:1577-84.

    PubMed  Google Scholar 

  83. Cheng, B., Christakos, S., and Mattson, M. P. 1994. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139-53.

    PubMed  Google Scholar 

  84. Kahn, M. A., Ellison, J. A., Speight, G. H., and De Vellis, J. 1995. CNTF regulation of astrogliosis and the activation of microglia in the developing rat central nervous system. Brain Res. 685:55-67.

    PubMed  Google Scholar 

  85. Eng, L. F., Lee, Y. L., and Yu, A. C. H. 1994a. Gene expression in a mechanical injury model. Trans. Am. Soc. Neurochem. 25:235.

    Google Scholar 

  86. Norris, J. G., Tang, L. P., Sparacio, S. M., and Benveniste, E. N. 1994. Signal transduction pathways mediating astrocyte IL-6 induction by IL-1 β and tumor necrosis factor-α. J. Immunol. 152:841-50.

    PubMed  Google Scholar 

  87. Woodroofe, M. N., Sarna, G. S., Wadhwa, M., Hayes, G. M., Loughlin, A. J., Tinker, A., and Cuzner, M. L. 1991. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33:227-236.

    PubMed  Google Scholar 

  88. Taupin, V., Toulmond, S., Serrano, A., Beavides, J., and Zavala, F. 1993. Increase in IL-6, IL-1 and TNF levels in the rat brain following traumatic lesion. J. Neuroimmunol. 42:177-186.

    PubMed  Google Scholar 

  89. Chiang, C. S., Stalder, A., Samimi, A., and Campbell, I. L. 1994. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev. Neurosci. 16:212-21.

    PubMed  Google Scholar 

  90. Brett, F. M., Mizisin, A. P., Powell, H. C., and Campbell, I. L. 1995. Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J. Neuropathol. and Exp. Neurol. 54:766-775.

    Google Scholar 

  91. Hariri, R. J., Chang, V. A., Barie, P. S., Wang, R. S., Sharif, S. F., and Ghajar, J. B. 1994. Traumatic injury induces interleukin-6 production by human astrocytes. Brain Res. 636:139-42.

    PubMed  Google Scholar 

  92. Benveniste, E. N., Sparacio, S. M., Norris, J. G., Grenett, H. E., Fuller, G. M. 1990. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 30:201-12.

    PubMed  Google Scholar 

  93. Murphy, G. M. Jr., Jia, X.-C., Yu, A. C. H., Lee, Y. L., Tinklenberg, J. R., and Eng, L. F. 1993. Reverse transcription and polymerase chain reaction technique for quantification of mRNA in primary astrocyte cultures. J. Neurosci. Res. 35:643-651.

    PubMed  Google Scholar 

  94. Finch, C. E., Laping, N. J., Morgan, T. E., Nichols, N. R., and Pasinetti, G. M. 1993. TGF-β 1 is an organizer of responses to neurodegeneration. J. Cell Biochem. 53:314-22.

    PubMed  Google Scholar 

  95. Pasinetti, G. M., Nichols, N. R., Tocco, G., and Morgan T. 1993. Transforming growth factor-β1 and fibronectin messenger RNA in rat brain: responses to injury and cell type localization. Neuroscience 54:893-907.

    PubMed  Google Scholar 

  96. Wahl, S. M., Allen, J. B., McCartney-Francis, N., Morganti-Kossman, T., Ellingsworth, L., Mai, U. E., Mergenhagen, S. E., and Orenstein, J. M. 1991. Macrophage-and astrocyte-derived transforming growth factor β as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J. Exp. Med. 173:981-91.

    PubMed  Google Scholar 

  97. O'Brien, M. F., Lenke, L. G., Lou, J., Bridwell, K. H., and Joyce, M. E. 1994. Astrocyte response and transforming growth factor-β localization in acute spinal cord injury. Spine 19:2321-2330.

    PubMed  Google Scholar 

  98. Kiefer, R., Lindholm, D., and Kreutzberg, G. W. 1993. Interleukin-6 and transforming growth factor-beta 1 mRNAs are induced in rat facial nucleus following motoneuron axotomy. European J. Neurosci. 5:775-781.

    Google Scholar 

  99. Vergeli, M., Mazzanti, B., Ballerini, C., Gran, B., Amaducci, L., and Massacesi, L. 1995. Transforming growth factor-β 1 inhibits the proliferation of rat astrocytes induced by serum and growth factors. J. Neurosci. Res. 40:127-33.

    PubMed  Google Scholar 

  100. Logan, A., Berry, M., Gonzalez, A. M., Frautschy, S. A., Sporn, M. B., and Baird, A. (1994): Effects of transforming growth factor β 1 on scar production in the injured central nervous system of the rat. Eur. J. Neurosci. 6:355-63.

    PubMed  Google Scholar 

  101. Galbreath, E., Kim, S. J., Park-K, Brenner, M., and Messing, A. (1995): Overexpression of TGF-β 1 in the central nervous system of transgenic mice results in hydrocephalus. J. Neuropathol. Exp. Neurol. 54:339-49.

    PubMed  Google Scholar 

  102. Lefer, A. M., (1991): Mechanisms of the protective effects of transforming growth factor-β in reperfusion injury. Biochemical Pharmacology 42:1323-7.

    PubMed  Google Scholar 

  103. Frautschy, S. A., Walicke, P. A., and Baird, A. (1991): Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res. 553:291-299.

    PubMed  Google Scholar 

  104. Gomez-Pinilla, F., Lee, J. W. K., and Cotman, C. W. (1992): Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J. Neurosci. 12:345-355.

    PubMed  Google Scholar 

  105. Woodward, W. R., Nishi, R., Meshul, C. K., Williams, T. E., Coulombe, M., and Eckenstein, F. P. (1992): Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons. J. Neurosci. 12:142-152.

    PubMed  Google Scholar 

  106. Vijayan, V. K., Lee, Y. L., and Eng, L. F. (1993) Immunohistochemical localization of basic fibroblast growth factor in cultured rat astrocytes and oligodendrocytes. Int. J. Dev. Neurosci. 11:257-267.

    PubMed  Google Scholar 

  107. Neugarten, J., Feith, G. W., Assmann, K. J., Shan, Z., Stanley, E. R., and Schlondorff, D. 1995. Role of macrophages and colony-stimulating factor-1 in murine antiglomerular basement membrane glomerulonephritis. J. Am. Soc. Nephr. 5:1903-1909.

    Google Scholar 

  108. VanOtteran, G. M., Strieter, R. M., Kunke, S. L., Paine R 3rd, Greenberger, M. J., Danforth, J. M., Burdick, M. D., and Standiford, T. J. (1995). Compartmentalized expression of RANTES in a murine model of exdotoxemia. J. Immunol. 154:1900-8.

    PubMed  Google Scholar 

  109. Seebach, J., Bartholdi, D., Frei, K., Spanaus, K. S., Ferrero, E., Widmer, U., Isenmann, S., Strieter, R. M., Schwab, M., Pfister H., et al. 1995. Experimental Listeria meningoencephalitis Macrophage inflammatory protein-1 α and-2 are produced intrathecally and mediate chemotactic activity in cerebrospinal fluid of infected mice. J. Immunol. 155:4367-75.

    PubMed  Google Scholar 

  110. Merrill, J. E., and Benveniste, E. N. (1996): Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 19:331-338.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghirnikar, R.S., Lee, Y.L. & Eng, L.F. Inflammation in Traumatic Brain Injury: Role of Cytokines and Chemokines. Neurochem Res 23, 329–340 (1998). https://doi.org/10.1023/A:1022453332560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022453332560

Navigation