Skip to main content
Log in

More genes in vertebrates?

  • Published:
Journal of Structural and Functional Genomics

Abstract

With the acquisition of complete genome sequences from several animals, there is renewed interest in the pattern of genome evolution on our own lineage. One key question is whether gene number increased during chordate or vertebrate evolution. It is argued here that comparing the total number of genes between a fly, a nematode and human is not appropriate to address this question. Extensive gene loss after duplication is one complication; another is the problem of comparing taxa that are phylogenetically very distant. Amphioxus and tunicates are more appropriate animals for comparison to vertebrates. Comparisons of clustered homeobox genes, where gene loss can be identified, reveals a one to four mode of evolution for Hox and ParaHox genes. Analyses of other gene families in amphioxus and vertebrates confirm that gene duplication was very widespread on the vertebrate lineage. These data confirm that vertebrates have more genes than their closest invertebrate relatives, acquired through gene duplication. abbreviations IHGSC, International Human Genome Sequencing Consortium; TCESC, The C. elegans Sequencing Consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, M.D. et al. (2000) The genome sequence of Drosophila melanogaster. Science, 287, 2185-2195.

    Google Scholar 

  • Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R. and Lake, J.A. (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489-493.

    Google Scholar 

  • Arai, R., Suzuki, A. and Akai Y. (1988) The karyotype and DNA value of a cypriniform algae eater, Gyrinocheilus aymonieri. Jpn. J. Ichthyol., 34, 515-517.

    Google Scholar 

  • Araki, I., Terazawa, K. and Satoh, N. (1996) Duplication of an amphioxus myogenic bHLH gene is independent of vertebrate myogenic bHLH gene duplication. Gene, 171, 231-236.

    Google Scholar 

  • Aristotle (350 BC) History of Animals (Translation, D'Arcy Wentworth Thompson). Library of the Future, Second Series 1991, World Library, Inc., Garden Grove, CA.

    Google Scholar 

  • Atkin, N.B. and Ohno, S. (1967) DNA values of four primitive chordates. Chromosoma, 23, 10-13.

    Google Scholar 

  • Baltimore, D. (2001) Our genome unveiled. Nature, 409, 814-816.

    Google Scholar 

  • Brooke, N.M., Garcia-Fernàndez, J. and Holland, P.W.H. (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature, 392, 920-922.

    Google Scholar 

  • Claverie, J.-M. (2001) What if there are only 30,000 genes? Science, 291, 1255-1257.

    Google Scholar 

  • de Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B. and Balavoine, G. (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399, 772-776.

    Google Scholar 

  • Ferrier, D.E.K. and Holland, P.W.H. (2001) Ancient origins of the Hox gene cluster. Nature Rev. Genet. 2, 33-38.

    Google Scholar 

  • Ferrier, D.E.K., Minguillon, C., Holland, P.W.H. and Garcia-Fernandez, J. (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol. Dev., 2, 284-293.

    Google Scholar 

  • Flybase (1999) The Flybase database of the Drosophila genome projects and community literature. Nucleic Acids Res., 27, 85-88.

    Google Scholar 

  • Furlong, R.F. and Holland, P.W.H. (2002) Were vertebrates octoploid? Phil. Trans. R. Soc. Ser. B, 357, 531-544.

    Google Scholar 

  • Garcia-Fernández, J. and Holland, P.W.H. (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370, 563-566.

    Google Scholar 

  • Hinegardner, R. and Rosen, D.E. (1972) Cellular DNA content and the evolution of teleostean fishes. Amer. Naturalist, 106, 621-644.

    Google Scholar 

  • Holland, P.W.H. (1999) Gene duplication: past, present and future. Semin. Cell Dev. Biol., 10, 541-547.

    Google Scholar 

  • Holland, P.W.H. and Garcia-Fernàndez, J. (1996) Hox genes and chordate evolution. Dev. Biol., 173, 382-395.

    Google Scholar 

  • Holland, P.W.H., Holland, L.Z., Williams, N.A. and Holland, N.D. (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development, 116, 653-661.

    Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860-921.

    Google Scholar 

  • Jefferies, R.P.S. and Lewis, D.N. (1978) The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Phil. Trans. R. Soc. Ser. B, 282, 205-323.

    Google Scholar 

  • Krakauer, D.C. and Nowak, M. (1999) Evolutionary preservation of redundant duplicated genes. Semin. Cell Dev. Biol., 10, 555-559.

    Google Scholar 

  • Ohno, S. (1970) Evolution by Gene Duplication, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Ohno, S. (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin. Cell Dev. Biol., 10, 517-522.

    Google Scholar 

  • Patton, S.J., Luke, G.N. and Holland, P.W.H. (1998) Complex history of a chromosomal paralogy regions: insights from amphioxus aromatic amino acid hydroxylase genes and insulinrelated genes. Mol. Biol. Evol., 15, 1373-1380.

    Google Scholar 

  • Pendleton, J.W., Nagai, B.K., Murtha, M.T. and Ruddle, F.H. (1993) Expansion of the Hox gene family and the evolution of chordates. Proc. Natl. Acad. Sci. USA, 90, 6300-6304.

    Google Scholar 

  • Pollard, S.L. and Holland, P.W.H. (2000) Evidence for fourteen homeobox gene clusters in human genome ancestry, Curr. Biol., 10, 1059-1062.

    Google Scholar 

  • Robinson, E.S., Potter, I.C. and Atkin, N.B. (1975) The nuclear DNA content of lampreys. Experientia, 31, 912-913.

    Google Scholar 

  • Rubin, G.M. (2001) Comparing species. Nature, 409, 820-821.

    Google Scholar 

  • Shimeld, S.M. and Holland, P.W.H. (2000) Vertebrate innovations. Proc. Natl. Acad. Sci. USA 97, 4449-4452.

    Google Scholar 

  • Schmidtke, J., Weiler, C., Kunz, B. and Engel, W. (1977) Isozymes of a tunicate and a cephalochordate as a test of polyploidisation in chordate evolution. Nature, 266, 532-533.

    Google Scholar 

  • Shu, D.-G., Conway Morris, S. and Zhang, X.-L. (1996) A Pikaialike chordate from the Lower Cambrian of China. Nature, 384, 157-158.

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome Sequence of the nematode Caenorhabditis elegans: a platform for investigating biology. Science, 282, 2012-2018.

    Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W. et al. (2001) The sequence of the human genome. Science, 291, 1304-1351.

    Google Scholar 

  • Wada, H. and Satoh, N. (1993) Details of the evolutionary history from invertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl. Acad. Sci. USA, 91, 1801-1804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, P.W. More genes in vertebrates?. J Struct Func Genom 3, 75–84 (2003). https://doi.org/10.1023/A:1022656931587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022656931587

Navigation