Skip to main content
Log in

Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We have previously shown that ovarian carcinoma cell adhesion to mesothelial cell monolayers and migration toward fibronectin, type IV collagen, and laminin is partially mediated by CD44, a proteoglycan known to affect the functional abilities of tumor cells. The purpose of this study was to determine the role of cell membrane glycosylation in the metastatic abilities of ovarian carcinoma cells. NIH:OVCAR5 cells were treated with glycosidases to remove carbohydrate moieties from molecules on the cells' surface. The ability of the treated cells to adhere to extracellular matrix components or mesothelial cell monolayers, migrate toward extracellular matrix proteins, and invade through Matrigel was assessed. We observed that the loss of different carbohydrate moieties resulted in altered ovarian carcinoma cell adhesion, migration, and/or invasion toward extracellular matrix components or mesothelial cell monolayers. Gene array analysis of NIH:OVCAR5 cells revealed the expression of several proteoglycans, including syndecan 4, decorin, and perlecan. In tissue samples obtained from patients, altered proteoglycan gene expression was observed in primary ovarian carcinoma tumors and secondary metastases, compared to normal ovaries. Taken together, these results suggest that ovarian carcinoma cell proteoglycans affect the cells' ability to adhere, migrate, and invade toward extracellular matrix components and mesothelial cell monolayers. Thus, the carbohydrate modifications of several proteoglycans may mediate the formation and spread of secondary tumor growth in ovarian carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knox P, Wells P. Cell adhesion and proteoglycans I. The effect of exogenous proteoglycans on the attachment of chick embryo fibroblasts to tissue culture plastic and collagen. J Cell Sci 1979; 40: 77–88.

    PubMed  CAS  Google Scholar 

  2. Baciu PC, Goetinck PF. Protein kinase C regulates the recruitment of syndecan-4 into focal contacts. Mol Biol Cell 1995; 6: 1503–13.

    PubMed  CAS  Google Scholar 

  3. Dhodapkar MV, Abe E, Theus A et al. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: Control of tumor cell survival, growth, and bone cell differentiation. Blood 1998; 91: 2679–88.

    PubMed  CAS  Google Scholar 

  4. Cannistra SA, Abu-Jawdeh G, Niloff J et al. CD44 variant expression is a common feature of epithelial ovarian cancer: Lack of association with standard prognostic factors. J Clin Oncol 1995; 13: 1912–21.

    PubMed  CAS  Google Scholar 

  5. Lessan K, Aguiar DJ, Oegema T et al. CD44 and ?1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol 1999; 154: 1525–37.

    PubMed  CAS  Google Scholar 

  6. Casey RC, Skubitz APN. CD44 and ?1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin Exp Metastasis 2000; 18: 67–75.

    Article  PubMed  CAS  Google Scholar 

  7. Aruffo A, Stamenkovic I, Melnick M et al. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303–13.

    Article  PubMed  CAS  Google Scholar 

  8. Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol 1992; 116: 817–25.

    Article  PubMed  CAS  Google Scholar 

  9. Gardner MJ, Catterall, JB, Jones LM et al. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: A possible step in peritoneal metastasis. Clin Exp Metastasis 1996; 14: 325–34.

    Article  PubMed  CAS  Google Scholar 

  10. Strobel T, Swanson L, Cannistra SA. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: A novel role for CD44 in the process of peritoneal implantation. Cancer Res 1997; 57: 1228–32.

    PubMed  CAS  Google Scholar 

  11. Catterall JB, Jones LMH, Turner GA. Membrane glycosylation and CD44 content in the adhesion of human ovarian cancer cells to hyaluronan. Clin Exp Metastasis 1999; 17: 583–91.

    Article  PubMed  CAS  Google Scholar 

  12. Liebersbach BF, Sanderson RD. Expression of syndecan-1 inhibits cell invasion into type I collagen. J Biol Chem 1994; 269: 20013–19.

    PubMed  CAS  Google Scholar 

  13. Kokenyesi R. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix. J Cell Biochem 2001; 83: 259–70.

    Article  PubMed  CAS  Google Scholar 

  14. LeBaron RG, Zimmermann DR, Ruoslahti E. Hyaluronate binding properties of versican. J Biol Chem 1992; 267: 10003–10.

    PubMed  CAS  Google Scholar 

  15. Touab M, Villena J, Barranco C et al. Versican is differentially expressed in human melanoma and may play a role in tumor development. Am J Pathol 2002; 160: 549–57.

    PubMed  CAS  Google Scholar 

  16. Nash MA, Loercher AE, Freedman RS. In vitro growth inhibition of ovarian cancer cells by decorin: Synergism of action between decorin and carboplatin. Cancer Res 1999; 59: 6192–6.

    PubMed  CAS  Google Scholar 

  17. Molpus KL, Koelliker D, Atkins L et al. Characterization of a xenograft model of human ovarian carcinoma which produces intraperitoneal carcinomatosis and metastases in mice. Int J Cancer 1996; 68: 588–95.

    Article  PubMed  CAS  Google Scholar 

  18. Hamilton TC, Young RC, Ozols RF. Experimental model systems of ovarian cancer: Applications to the design and evaluation of new treatment approaches. Semin Oncol 1984; 11: 285–98.

    PubMed  CAS  Google Scholar 

  19. McCarthy JB, Skubitz APN, Palm SL et al. Metastasis inhibition of different tumor types by purified laminin fragments and a heparinbinding fragment of fibronectin. J Natl Cancer Inst 1988; 80: 108–16.

    PubMed  CAS  Google Scholar 

  20. Smith DE, Mosher DF, Johnson RB et al. Immunological identi-fication of two sulfhydryl-containing fragments of human plasma fibronectin. J Biol Chem 1982; 257: 5831–8.

    PubMed  CAS  Google Scholar 

  21. Pattaramalai S, Skubitz KM, Skubitz APN. A novel recognition site on laminin for ?3?1 integrin. Exp Cell Res 1996; 222: 281–90.

    Article  PubMed  CAS  Google Scholar 

  22. Bourguignon LYW, Zhu H, Shao L et al. CD44 interactions with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 2001; 276: 7327–36.

    Article  PubMed  CAS  Google Scholar 

  23. Bourguignon LYW, Zhu H, Zhou B et al. Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185HER2 and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 2001; 276: 48679–92.

    Article  PubMed  CAS  Google Scholar 

  24. Yang BL, Zhang Y, Cao L et al. Cell adhesion and proliferation mediated through the G1 domain of versican. J Cell Biochem 1999; 72: 210–20.

    Article  PubMed  CAS  Google Scholar 

  25. Ang LC, Zhang Y, Cao L et al. Versican enhances locomotion of astrocytoma cells and reduces cell adhesion through its G1 domain. J Neuropathol Exp Neurol 1999; 58: 597–605.

    PubMed  CAS  Google Scholar 

  26. Ridley RC, Xiao H, Hata H et al. Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 1993; 8: 767–74.

    Google Scholar 

  27. Feyzi E, Saldeen T, Larsson E et al. Age-dependent modulation of heparan sulfate structure and function. J Biol Chem 1998; 273: 13395–8.

    Article  PubMed  CAS  Google Scholar 

  28. Asundi VK, Carey DJ. Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmem152 R.C. Casey et al. brane domain and ectodomain flanking region. J Biol Chem. 1995; 270: 26404–10.

    Article  PubMed  CAS  Google Scholar 

  29. Johnson GR, Wong L. Heparan sulfate is essential to amphiregulininduced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem 1994; 269: 27149–54.

    PubMed  CAS  Google Scholar 

  30. Ghiselli G, Iozzo RV. Overexpression of bamacan/SMC3 causes transformation. J Biol Chem 2000; 275: 20235–8.

    Article  PubMed  CAS  Google Scholar 

  31. Iida J, Pei D, Kang T et al. Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. J Biol Chem 2001; 276: 18786–94.

    Article  PubMed  CAS  Google Scholar 

  32. Iida J, Meijne AML, Oegema TR et al. A role of chondroitin sulfate proteoglycosaminoglycan binding site in ?4?1 integrin-mediated melanoma cell adhesion. J Biol Chem 1998; 273: 5955–62.

    Article  PubMed  CAS  Google Scholar 

  33. Shridhar V, Sen A, Chien J et al. Identification of underexpressed genes in early-and late-stage primary ovarian tumors by suppression subtraction hybridization. Cancer Res 2002; 62: 262–70.

    PubMed  CAS  Google Scholar 

  34. Zhou FY, Owens R, Hermonen J et al. Sensitivity of cells for FGF-1 and FGF-2 is regulated by cell surface heparan sulfate proteoglycans. Eur J Cell Biol 1997; 73: 166–74.

    PubMed  CAS  Google Scholar 

  35. Aviezer D, Levy E, SafranMet al. Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J Biol Chem 1994; 269: 114–21.

    PubMed  CAS  Google Scholar 

  36. Mertens G, Van der Schueren B, Van den Berghe H et al. Heparan sulfate expression in polarized epithelial cells: The apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol 1996; 132: 487–97.

    Article  PubMed  CAS  Google Scholar 

  37. Yeo TK, Brown L, Dvorak HF. Alterations in proteoglycan synthesis common to healing wounds and tumors. Am J Pathol 1991; 138: 1437–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casey, R.C., Oegema, T.R., Skubitz, K.M. et al. Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells. Clin Exp Metastasis 20, 143–152 (2003). https://doi.org/10.1023/A:1022670501667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022670501667

Navigation