Skip to main content
Log in

Paradoxical effects of a stress signal on pro- and anti-apoptotic machinery in HTLV-1 tax expressing cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adult T-cell leukemia (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) are associated with Human T-cell lymphotropic virus type 1 (HTLV-1) infection. The viral transactivator, Tax is able to mediate the cell cycle progression by targeting key regulators of the cell cycle such as p21/waf1, p16/ink4a, p53, cyclins D1–3/cdk complexes, and the mitotic spindle checkpoint MAD apparatus, thereby deregulating cellular DNA damage and checkpoint control.

Genome expression profiling of infected cells exemplified by the development of DNA microarrays represents a major advance in genome-wide functional analysis. Utilizing cDNA microarray analysis, we have observed an apparent opposing and paradoxical regulatory network of host cell gene expression upon the introduction of DNA damage stress signal. We find the apparent induction of cell cycle inhibitors, and pro- as well as anti-apoptotic gene expression is directly linked to whether cells are at either G1, S, or G2/M phases of the cell cycle. Specifically, a G1/S block is induced by p21/waf1 and p16/ink4a, while pro-apoptotic expression at S, and G2/M is associated with caspase activation, and anti-apoptotic gene expression is associated with up regulation of Bcl-2 family member, namely bfl-1 gene. Therefore, the microarray results indicating expression of both pro- and anti-apoptotic genes could easily be explained by the particular stage of the cell cycle. Mechanism and the functional outcome of induction for both pathways are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary microarray. Science 270: 467-470, 1995

    Google Scholar 

  2. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675-1680, 1996

    Google Scholar 

  3. de la Fuente C, Deng L, Santiago F, Arce L, Wang L, Kashanchi F: Gene expression array of HTLV type 1-infected T cells: Up-regulation of transcription factors and cell cycle genes. AIDS Res. Hum Retroviruses 16: 1695-1700, 2000

    Google Scholar 

  4. de la Fuente C, Santiago F, Chong SY, Deng L, Mayhood T, Fu P, Stein D, Denny T, Coffman F, Azimi N, Mahieux R, Kashanchi F: Overexpression of p21waf1 in human T-cell lymphotropic virus type 1-infected cells and its association with cyclin A/cdk2. J Virol 74: 7270-7283, 2000

    Google Scholar 

  5. Suzuki T, Kitao S, Matsushime H, Yoshida M: HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. EMBO J. 15: 1607-1614, 1996

    Google Scholar 

  6. Haller K, Ruckes T, Schmitt I, Saul D, Derow E, Grassmann R: Taxdependent stimulation of G1 phase-specific cyclin-dependent kinases and increased expression of signal transduction genes characterize HTLV type 1-transformed T cells. AIDS Res Hum Retroviruses 16: 1683-1688, 2000

    Google Scholar 

  7. Jin DY, Spencer F, Jeang KT: Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81-91, 1998

    Google Scholar 

  8. Santiago F, Clark E, Chong S, Molina C, Mozafari F, Mahieux R, Fuji M, Azimi N, Kashanchi F: Transcriptional up-regulation of the cyclin D2 gene and acquisition of new cyclin-dependent kinase partners in human T-cell leukemia virus type 1-infected cells. J Virol 73: 9917-9927, 1999

    Google Scholar 

  9. Van PL, Yim KW, Jin DY, Dapolito G, Kurimasa A, Jeang KT: Genetic evidence of a role for ATM in functional interaction between human T-cell leukemia virus type 1 Tax and p53. J Virol 75: 396-407, 2001

    Google Scholar 

  10. Ariumi Y, Kaida A, Lin JY, Hirota M, Masui O, Yamaoka S, Taya Y, Shimotohno K: HTLV-1 tax oncoprotein represses the p53-mediated trans-activation function through coactivator CBP sequestration. Oncogene 19: 1491-1499, 2000

    Google Scholar 

  11. Mulloy JC, Kislyakova T, Cereseto A, Casareto L, LoMonico A, Fullen J, Lorenzi MV, Cara A, Nicot C, Giam C, Franchini G: Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol 72: 8852-8860, 1998

    Google Scholar 

  12. Pise-Masison CA, Radonovich M, Sakaguchi K, Appella E, Brady JN: Phosphorylation of p53: A novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells. J Virol 72: 6348-6355, 1998

    Google Scholar 

  13. Pise-Masison CA, Mahieux R, Radonovich M, Jiang H, Brady JN: Human T-lymphotropic virus type I Tax protein utilizes distinct pathways for p53 inhibition that are cell type-dependent. J Biol Chem 276: 200-205, 2001

    Google Scholar 

  14. Kao SY, Lemoine FJ, Mariott SJ: HTLV-1 Tax protein sensitizes cells to apoptotic cell death induced by DNA damaging agents. Oncogene 19: 2240-2248, 2000

    Google Scholar 

  15. Hall AP, Irvine J, Blyth K, Cameron ER, Onions DE, Campbell ME: Tumours derived from HTLV-I tax transgenic mice are characterized by enhanced levels of apoptosis and oncogene expression. J Pathol 186: 209-214, 1998

    Google Scholar 

  16. Chen X, Zachar V, Zdravkovic M, Guo M, Ebbesen P, Liu X: Role of the Fas/Fas ligand pathway in apoptotic cell death induced by the human T cell lymphotropic virus type I Tax transactivator. J Gen Virol 78: 3277-3285, 1997

    Google Scholar 

  17. Chlichlia K: ICE-proteases mediate HTLV-I Tax-induced apoptotic T-cell death. Oncogene 14: 2265-2272, 1997

    Google Scholar 

  18. Nicot C, Harrod R: Distinct p300-responsive mechanisms promote caspase-dependent apoptosis by human T-cell lymphotropic virus type 1 Tax protein. Mol Cell Biol 20: 8580-8589, 2000

    Google Scholar 

  19. Brauweiler A, Garrus JE, Reed JC, Nyborg JK: Repression of bax gene expression by the HTLV-1 Tax protein: Implications for suppression of apoptosis in virally infected cells. Virology 231: 135-140, 1997

    Google Scholar 

  20. Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G, Iwanaga Y, Yamamoto N, Ohtani K, Nakamura M, Fujii M: Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 73: 7981-7987, 1999

    Google Scholar 

  21. Kawakami A, Nakashima T, Sakai H, Urayama S, Yamasaki S, Hida A, Tsuboi M, Nakamura H, Ida H, Migita K, Kawabe Y, Eguchi K: Inhibition of caspase cascade by HTLV-I tax through induction of NF-kappaB nuclear translocation. Blood 94: 3847-3854, 1999

    Google Scholar 

  22. Li X, Darzynkiewicz Z: Cleavage of Poly(ADP-ribose) polymerase measured in situ in individual cells: Relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res 255: 125-132, 2000

    Google Scholar 

  23. Dantzer F, Nasheuer HP, Vonesch JL, de Murcia G, Menissier-de Murcia J: Functional association of poly(ADP-ribose) polymerase with DNA polymerase alpha-primase complex: A link between DNA strand break detection and DNA replication. Nucleic Acids Res 26: 1891-1898, 1998

    Google Scholar 

  24. Baldin V: 14-3-3 proteins and growth control. Prog Cell Cycle Res 4: 49-60, 2000

    Google Scholar 

  25. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B: 14-3-3 Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616-620, 1999

    Google Scholar 

  26. el-Deiry WS: Regulation of p53 downstream genes. Semin Cancer Biol 8: 345-357, 1998

    Google Scholar 

  27. Kashanchi F et al.: In: R. Ahmed, I. Chen (eds). Human T-cell Leukemia Virus. Persistent Viral Infections. John Wiley and Sons Ltd., New York, 1999, pp 47-75

    Google Scholar 

  28. Ng PW, Iha H, Iwanaga Y, Bittner M, Chen Y, Jiang Y, Gooden G, Trent JM, Meltzer P, Jeang KT, Zeichner SL: Genome-wide expression changes induced by HTLV-1 Tax: Evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-kappaB activation. Oncogene 20: 4484-96, 2001

    Google Scholar 

  29. O'Connor PM: Mammalian G1 and G2 phase checkpoints. Cancer Surv 29: 151-182, 1997

    Google Scholar 

  30. Szumiel I: Monitoring and signaling of radiation-induced damage in mammalian cells. Radiat Res 150: S92-S101, 1998

    Google Scholar 

  31. Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY: DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18: 7883-7899, 1999

    Google Scholar 

  32. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donchower LA, Elledge SJ: Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14: 1448-1459, 2000

    Google Scholar 

  33. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW: DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287: 1824-1827, 2000

    Google Scholar 

  34. Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187-5190, 1995

    Google Scholar 

  35. Fernandez J, Gharahdaghi F, Mische SM: Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19: 1036-1045, 1998

    Google Scholar 

  36. Harhaj EW, Good L, Xiao G, Sun SC: Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene 18: 1341-1349, 1999

    Google Scholar 

  37. Thullberg M, Bartkova J, Khan S, Hansen K, Ronnstrand L, Lukas J, Strauss M, Bartek J: Distinct vs. redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett 470: 161-166, 2000

    Google Scholar 

  38. Biolo G, Bosutti A, Iscra F, Toigo G, Gullo A, Guarnieri G: Contribution of the ubiquitin-proteasome pathway to overall muscle proteolysis in hypercatabolic patients. Metabolism 49: 689-691, 2000

    Google Scholar 

  39. Saeki K, Yuo A, Suzuki E, Yazaki Y, Takaku F: Aberrant expression of cAMP-response-element-binding protein ('CREB') induces apoptosis. Biochem J 343: 249-255, 1999

    Google Scholar 

  40. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J: DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26: 2644-2649, 1998

    Google Scholar 

  41. Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G, Oliver J, Rolli V, Menissier-de Murcia J, de Murcia G: Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81: 69-75, 1999

    Google Scholar 

  42. Yakovlev AG, Wang G, Stoica BA, Simbulan-Rosenthal CM, Yoshihara K, Smulson ME: Role of DNAS1L3 in Ca2+-and Mg2+-dependent cleavage of DNA into oligonucleosomal and high molecular mass fragments. Nucleic Acids Res 27: 1999-2005, 1999

    Google Scholar 

  43. Gong B, Almasan A: Differential upregulation of p53-responsive genes by genotoxic stress in hematopoietic cells containing wild-type and mutant p53. Gene Expr 8: 197-206, 1999

    Google Scholar 

  44. Chen F, Wagner PD: 14-3-3 proteins bind to histone and affect both histone phosphorylation and dephosphorylation. FEBS Lett 347: 128-132, 1994

    Google Scholar 

  45. Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD: ATM-de-pendent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 19: 175-178, 1998

    Google Scholar 

  46. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J: Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509, 1998

    Google Scholar 

  47. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X: Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269-290, 1999

    Google Scholar 

  48. D'Sa-Eipper C, Chinnadurai G: Functional dissection of Bfl-1, a Bcl-2 homolog: Anti-apoptosis, oncogene-cooperation and cell proliferation activities. Oncogene 16: 3105-3114, 1998

    Google Scholar 

  49. Chen C, Edelstein LC, Gelinas C: The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20: 2687-2695, 2000

    Google Scholar 

  50. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C: The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNF alpha-induced apoptosis. Genes Dev 13: 382-387, 1999

    Google Scholar 

  51. Nicot C, Mahieux R, Takemoto S, Franchini G: Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood 96: 275-281, 2000

    Google Scholar 

  52. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817-827, 1996

    Google Scholar 

  53. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES: Molecular ordering of the Fas-apoptotic pathway: The Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93: 14486-14491, 1996

    Google Scholar 

  54. Kuwana T, Smith JJ, Muzio M, Dixit V, Newmeyer DD, Kornbluth S: Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 273: 16589-16594, 1998

    Google Scholar 

  55. Adams JM, Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 281: 1322-1326, 1998

    Google Scholar 

  56. Chao DT, Korsmeyer SJ: BCL-2 family: Regulators of cell death. Annu Rev Immunol 16: 395-419, 1998

    Google Scholar 

  57. Reed JC: Double identity for proteins of the Bcl-2 family. Nature 387: 773-776, 1997

    Google Scholar 

  58. Reed JC: Bcl-2 family proteins. Oncogene 17: 3225-3236, 1998

    Google Scholar 

  59. Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-1462, 1995

    Google Scholar 

  60. Wang CY, Guttridge DC, Mayo MW, Baldwin AS Jr: NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19: 5923-5929, 1999

    Google Scholar 

  61. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275: 1132-1136, 1997

    Google Scholar 

  62. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB: Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627-637, 1997

    Google Scholar 

  63. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME: Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675-1687, 1998

    Google Scholar 

  64. Zhang H, Cowan-Jacob SW, Simonen M, Greenhalf W, Heim J, Meyhack B: Structural basis of BFL-1 for its interaction with BAX and its anti-apoptotic action in mammalian and yeast cells. J Biol Chem 275: 11092-11099, 2000

    Google Scholar 

  65. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609-619, 1993

    Google Scholar 

  66. Kelekar A, Thompson CB: Bcl-2-family proteins: The role of the BH3 domain in apoptosis. Trends Cell Biol 8: 324-330, 1998

    Google Scholar 

  67. D'Sa-Eipper C, Subramanian T, Chinnadurai G: bfl-1, a bcl-2 homologue, suppresses p53-induced apoptosis and exhibits potent cooperative transforming activity. Cancer Res 56: 3879-3882, 1996

    Google Scholar 

  68. Salahuddin SZ, Markham PD, Wong-Staal F, Franchini G, Kalyanaraman VS, Gallo RC: Restricted expression of human T-cell leukemia-lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology. 129: 51-64, 1983

    Google Scholar 

  69. Bhat NK, Adachi Y, Samuel KP, Derse D: HTLV-1 gene expression by defective proviruses in an infected T-cell line. Virology 196: 15-24, 1993

    Google Scholar 

  70. Lacoste J, Petropoulos L, Pepin N, Hiscott J: Constitutive phosphorylation and turnover of I kappa B alpha in human T-cell leukemia virus type I-infected and Tax-expressing T cells. J Virol 69: 564-569, 1995

    Google Scholar 

  71. Pise-Masison CA, Radonovich M, Mahieux R, Chatterjee P, Whiteford C, Duvall J, Guillerm C, Gessain A, Brady JN: Transcription profile of cells infected with human T-cell leukemia virus type I compared with activated lymphocytes. Cancer Res 62: 3562-3571, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente, C., Wang, L., Wang, D. et al. Paradoxical effects of a stress signal on pro- and anti-apoptotic machinery in HTLV-1 tax expressing cells. Mol Cell Biochem 245, 99–113 (2003). https://doi.org/10.1023/A:1022866027585

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022866027585

Navigation