Skip to main content
Log in

Correlation of rFVIII Inactivation with Aggregation in Solution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study was designed to investigate the stability of recombinant FVIII (rFVIII) in solution at different pHs and to probe the cause(s) of rFVIII inactivation under accelerated storage conditions.

Methods. Aqueous stability samples of full-length rFVIII at different pHs were incubated at 40°C for several days and analyzed by the one-stage clotting assay, SEC-HPLC, SDS-PAGE, and UV spectrophotometry.

Results. Incubation of liquid rFVIII at 40°C inactivated the protein rapidly and linearly with time on a semi-log scale at all pHs, suggesting a first order or pseudo first order process. A U-shaped relationship was found between the rate constant for loss of rFVIII activity and the solution pH. The minimal rate of inactivation was found between pH 6.6 and 7.0 with a half-life of approximately 4 days. The SEC-HPLC results indicated pH-dependent aggregation of rFVIII during incubation. It was found that the disappearance of monomeric rFVIII by SEC-HPLC correlated with the loss of rFVIII activity (r2 = 0.97). Both the SDS-PAGE and UV results confirmed the aggregation pathway of rFVIII. In addition, the SDS-PAGE results suggest involvement of three aggregation mechanisms - disulfide-bond formation/exchange, non-reducible crosslinking, and physical interactions.

Conclusions. The full-length rFVIII is unstable in solution at 40°C and loses activity rapidly through a first order or pseudo first order aggregation process, which consists of both physical and chemical pathways. SEC-HPLC may be used in monitoring rFVIII stability studies in lieu of the clotting assay under the incubation conditions used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Gitschier, W. I. Wood, T. M. Goralka, K. L. Wion, E. Y. Chen, D. H. Eaton, G. A. Vehar, D. J. Capon, and R. M. Lawn. Characterization of the human factor VIII gene. Nature 312:326-330 (1984).

    Google Scholar 

  2. G. A. Vehar, B. Keyt, D. Eaton, H. Rodriguez, D. P. O'Brien, F. Rotblat, H. Oppermann, R. Keck, W. I. Wood, R. N. Harkins, E. G. D. Tuddenham, R. M. Lawn, and D. J. Capon. Structure of human factor VIII. Nature 312:337-342 (1984).

    Google Scholar 

  3. P. J. Fay. Factor VIII structure and function. Thromb. Haemost. 70:63-67 (1993).

    Google Scholar 

  4. P. J. Lenting, J. A. van Mourik, and K. Mertens. The life cycle of coagulation factor VIII in view of its structure and function. Blood 92:3983-3996 (1998).

    Google Scholar 

  5. P. Lollar. Structure and function of Factor VIII. Adv. Exp. Med. Biol. 386:3-17 (1995).

    Google Scholar 

  6. D. Eaton, H. Rodriguez, and G. A. Vehar. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 25:505-512 (1986).

    Google Scholar 

  7. N. Bihoreau, P. Paolantonacci, C. Bardelle, M. P. Fontaine-Aupart, S. Krishnan, J. Yon, and J. L. Romet-Lemonne. Structural and functional characterization of Factor VIII-delta II, a new recombinant Factor VIII lacking most of the B-domain. Biochem. J. 277:23-31 (1991).

    Google Scholar 

  8. P. J. Fay, M. T. Anderson, S. I. Chavin, and V. J. Marder. The size of human factor VIII heterodimers and the effects produced by thrombin. Biochim. Biophys. Acta 871:268-278 (1986).

    Google Scholar 

  9. D. L. Eaton, P. E. Hass, L. Riddle, J. Mather, M. Wiebe, T. Gregory, and G. A. Vehar. Characterization of recombinant human factor VIII. J. Biol. Chem. 262:3285-3290 (1987).

    Google Scholar 

  10. K. Sudhakar and P. J. Fay. Exposed hydrophobic sites in factor VIII and isolated subunits. J. Biol. Chem. 271:23015-23021 (1996).

    Google Scholar 

  11. M. E. Mikaelsson, N. Forsmanand, and U. M. Oswaldsson. Human factor VIII: a calcium-linked protein complex. Blood 62:1006-1015 (1983).

    Google Scholar 

  12. N. Bihoreau, S. Pin, A. M. de Kersabiec, F. Vidot, and M. P. Fontaine-Aupart. Copper-atom identification in the active and inactive forms of plasma-derived FVIII and recombinant FVIII-delta II. Eur. J. Biochem. 222:41-48 (1994).

    Google Scholar 

  13. L. Tagliavacca, N. Moon, W. R. Dunham, and R. J. Kaufman. Identification and functional requirement of Cu(I) and its ligands within coagulation factor VIII. J. Biol. Chem. 272:27428-27434 (1997).

    Google Scholar 

  14. B. A. McMullen, K. Fujikawa, E. W. Davie, U. Hedner, and M. Ezban. Locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII (antihemophilic factor A). Protein Sci. 4:740-746 (1995).

    Google Scholar 

  15. U. Martinowitz. Stability of factor VIII preparation in continuous infusion. Ann. Hematol. 68:S69-S71 (1994).

    Google Scholar 

  16. S. Schulman, S. Gitel, and U. Martinowitz. Stability of factor VIII concentrates after reconstitution. Am. J. Hematol. 45:217-223 (1994).

    Google Scholar 

  17. D. M. DiMichele, M. E. Lasak, and C. H. Miller. In vitro factor VIII recovery during the delivery of ultrapure factor VIII concentrate by continuous infusion. Am. J. Hematol. 51:99-103 (1996).

    Google Scholar 

  18. A. G. McLeod, I. R. Walker, S. Zheng, and C. P. Hayward. Loss of factor VIII activity during storage in PVC containers due to adsorption. Haemophilia 6:89-92 (2000).

    Google Scholar 

  19. A. O. Grillo, K. L. Edwards, R. S. Kashi, K. M. Shipley, L. Hu, M. J. Besman, and C. R. Middaugh. Conformational origin of the aggregation of recombinant human factor VIII. Biochemistry 40:586-595 (2001).

    Google Scholar 

  20. A. Fatouros, T. Osterberg, and M. Mikaelsson. Recombinant factor VIII SQ—inactivation kinetics in aqueous solution and the influence of disaccharides and sugar alcohols. Pharm. Res. 14:1679-1684 (1997).

    Google Scholar 

  21. A. Fatouros, Y. Liden, and B. Sjostrom. Recombinant factor VIII SQ—stability of VIII: C in homogenates from porcine, monkey and human subcutaneous tissue. J. Pharm. Pharmacol. 52:797-805 (2000).

    Google Scholar 

  22. H. J. Weiss. A study of the cation-and pH-dependent stability of factors V and VIII in plasma. Thromb. Diath. Haemorrh. 14:32-51 (1965).

    Google Scholar 

  23. P. Wolf. Studies of temperature and pH stability of human antihaemohilic factor in plasma and in concentrate. Brit. J. Haematol. 5:169-176 (1959).

    Google Scholar 

  24. A. Fatouros, T. Osterberg, and M. Mikaelsson. Recombinant factor VIII SQ-influence of oxygen, metal ions, pH and ionic strength on its stability in aqueous solution. Int. J. Pharm. 155:121-131 (1997).

    Google Scholar 

  25. G. Fields, D. Alonso, D. Stiger, and K. A. Dill. Theory for the aggregation of proteins and copolymers. J. Phys. Chem. 96:3974-3981 (1992).

    Google Scholar 

  26. A. L. Fink. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold. Des. 3:R9-23 (1998).

    Google Scholar 

  27. T. Osterberg and A. Fatouros. Composition comprising coagulation factor FVIII formulation, process for its preparation and use of a surfactant as stabilizer. US Patent 5919766: (1999).

  28. P. E. Fraser, D. R. McLachlan, W. K. Surewicz, C. A. Mizzen, A. D. Snow, J. T. Nguyen, and D. A. Kirschner. Conformation and fibrillogenesis of Alzheimer A beta peptides with selected substitution of charged residues. J. Mol. Biol. 244:64-73 (1994).

    Google Scholar 

  29. E. De Bernardez Clark and E. Schwarz. Rudolph R Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol. 309:217-236 (1999).

    Google Scholar 

  30. F. Manning, C. O. Fagain, R. O'Kennedy, and B. Woodhams. Effects of chemical modifiers on recombinant factor VIII activity. Thromb. Res. 80:247-254 (1995).

    Google Scholar 

  31. B. S. Chang, R. M. Beauvais, T. Arakawa, L. O. Narhi, A. Dong, D. I. Aparisio, and J. F. Carpenter. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution. Biophys. J. 71:3399-3406 (1996).

    Google Scholar 

  32. B. S. Kendrick, J. L. Cleland, X. Lam, T. Nguyen, T. W. Randolph, M. C. Manning, and J. F. Carpenter. Aggregation of recombinant human interferon gamma: kinetics and structural transitions. J. Pharm. Sci. 87:1069-1076 (1998).

    Google Scholar 

  33. B. S. Kendrick, J. F. Carpenter, J. L. Cleland, and T. W. Randolph. A transient expansion of the native state precedes aggregation of recombinant human interferon-gamma. Proc. Natl. Acad. Sci. USA 95:14142-14146 (1998).

    Google Scholar 

  34. S. Y. Patro and T. M. Przybycien. Simulations of kinetically irreversible protein aggregate structure. Biophy. J. 66:1274-1289 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Kelner, D.N. Correlation of rFVIII Inactivation with Aggregation in Solution. Pharm Res 20, 693–700 (2003). https://doi.org/10.1023/A:1023271405005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023271405005

Navigation