Skip to main content
Log in

GnT-V, macrophage and cancer metastasis: A common link

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

GnT-V generated, β1,6-branched polylactosamines are a common feature shared by normal granulocytes, monocytes, and a variety of malignant cells. Furthermore, activation of GnT-V in oncogenic transformation induces invasiveness and metastatic potential in mice as well as in humans. In view of the common expression of lymphocytic/monocytic trait, motility, and GnT-V by metastatic cancer cells, macrophage fusion hybrids were generated in vitro with Cloudman S91 mouse melanoma cells to test whether the parental traits are co-expressed in hybrids and how those are related to altered phenotypes in relation to metastasis. In fact, the fusion hybrids are highly metastatic in vivo, motile in vitro, and express macrophage-associated traits of increased GnT-V activity, β1,6 branching, and polylactosamine content. A Spontaneously formed lung melanoma metastases have been identified and characterized as host × tumor hybrid containing higher DNA content than parental cells and increased GnT-V activity [1]. The results, taken together, could reflect prior fusion of tumor-associated macrophages with cells of the primary tumor, and therefore establish a possible common link between elevated expression of GnT-V and malignant transformation, a well-known report. Moreover, the fusion hybrids with metastatic potential ranging from high to low offer a genetically matched model system, for identification and characterization of differentially expressed genes in association with metastasis, since the fusion partners are derived from the same species of mouse (DBA/2J).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborty AK, Sodi S, Rachkovsky M et al. A spontaneous murine melanoma lung metastasis comprised of host × tumor hybrids. Cancer Res 2000; 60: 2512–9.

    PubMed  CAS  Google Scholar 

  2. Van Noorden CJF, Meade-Tollin LC, Bosman FT. Metastasis Am Sci 1998; 86: 130–41.

    Google Scholar 

  3. Stracke ML, Liotta LA. Molecular mechanisms of tumor cell metastasis. In: Mendelsohn J, Howley PM, Israel MA, and Liotta LA (eds): The Molecular Basis of Cancer, Philadelphia: W. B. Saunders 1995; 233–47.

    Google Scholar 

  4. Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem 1988; 57: 785–838.

    PubMed  CAS  Google Scholar 

  5. Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989; 52: 257–331.

    Article  PubMed  CAS  Google Scholar 

  6. Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res 1996; 56: 2237–44.

    PubMed  CAS  Google Scholar 

  7. Pierce M, Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked triand tetraantennary glycopeptides containing GlcNAc-β1,6Man-α1,6Man and polylactosamine sequences than baby hamster kidney cells. J Biol Chem 1986; 261: 10772–7.

    PubMed  CAS  Google Scholar 

  8. Gu J, Nishikawa A, Tsuruoka N et al. Purification and characterization of UDP-N-acetylglucosamine: alpha-6-D-mannoside beta1-6Nacetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J Biochem (Tokyo) 1993; 113: 614–9.

    PubMed  CAS  Google Scholar 

  9. Demetriou M, Nabi IR, Coppolino M et al. Reduced contactinhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J Cell Biol 1995; 130: 383–92.

    PubMed  CAS  Google Scholar 

  10. Cummings RD, Trowbridge IS, Kornfeld S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc:α-D-mannoside β1,6-Nacetylglucosaminyl-transferase. J Biol Chem 1982; 257: 13421–7.

    PubMed  CAS  Google Scholar 

  11. Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999; 1473: 21–34.

    PubMed  CAS  Google Scholar 

  12. Van den Eijenden DH, Koenderman AH, Schiphorst W. Biosynthesis of blood group i-active polylactosaminoglycans. J Biol Chem 1988; 263: 12461–71.

    Google Scholar 

  13. Yousefi S, Higgins E, Daoling Z et al. Increased UDP-GlcNAc:Galβ1,3GalNAc-R(GlCNAc to GalNAc)β-1,6-N-acetylglucosaminyl-transferase activity in metastatic murine tumor cell lines: Control of polylactosamine synthesis. J Biol Chem 1991; 266: 1772–83.

    PubMed  CAS  Google Scholar 

  14. Fernandes B, Sagman U, Auger M et al. β1,6-branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 1991; 51: 718–23.

    PubMed  CAS  Google Scholar 

  15. Cumming RD, Kornfeld S. Characterization of structural determinants required for the high affinity interaction of asparagin-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythro agglutinating lectins. J Biol Chem 1982; 257: 11230–4.

    Google Scholar 

  16. Dennis JW. Effects of swainsonine and polyinosinic:polycytidylic acid on murine tumor cell growth and metastasis. Cancer Res 1986; 46: 5131–6.

    PubMed  CAS  Google Scholar 

  17. Dennis JW, Laferte S, Waghorne C et al. β1,6-branching of Asnlinked oligosaccharides is directly associated with metastasis. Science 1987; 236: 582–5.

    PubMed  CAS  Google Scholar 

  18. Fukuda M. Lysosomal membrane glycoproteins. J Biol Chem 1991; 15: 21327–30.

    Google Scholar 

  19. Honn KV, Tang DG. Adhesion molecules and tumor cell interaction with the endothelium and subendothelial matrix. Cancer Met Rev 1992; 11: 353–75.

    CAS  Google Scholar 

  20. Lu Y, Pelling JC, Chaney WG. Tumor cell surface beta 1,6 branched oligosaccharides and lung metastasis. Clin Exp Metastasis 1994; 12: 47–54.

    PubMed  CAS  Google Scholar 

  21. Miyoshi E, Nishikawa A, Ihara Y et al. Transforming growth factor β up-regulates expression of the N-acetylglucosaminyltransferase gene in mouse melanoma cells. J Biol Chem 1995; 270: 6216–20.

    PubMed  CAS  Google Scholar 

  22. Yoshimura M, Nishikawa A, Ihara Y et al. Suppression of lung metastasis of B-16 mouse melanoma by Nacetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci USA 1995; 92: 8754–8.

    PubMed  CAS  Google Scholar 

  23. Mantovani B. Different roles of IgG and complement receptors in phagocytosis by polymorphonuclear leukocytes. J Immunol 1975; 115: 15–17.

    PubMed  CAS  Google Scholar 

  24. Saito H, Gu J, Nishikawa A et al. Organization of the human Nacetylglucosaminyltransferase V gene. Eur J Biochem 1995; 233: 18–26.

    PubMed  CAS  Google Scholar 

  25. Saito H, Nishikawa A, Gu J, et al. CDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V. Biochem Biophys Res Commun 1994; 198: 318–27.

    PubMed  CAS  Google Scholar 

  26. Taniguchi N, Miyoshi E, Ko JH et al. Implication of Nacetylglucosaminyl-transferases III and V in cancer: Gene regulation and signaling mechanism. Biochem Biophys Acta 1999; 1455: 287–300.

    PubMed  CAS  Google Scholar 

  27. Chen G-Y, Kurosawa N, Muramatsu N. Functional analysis of promoter activity of murine β-1,6-N-acetylglucosaminyltransferase. Gene 2001; 275: 253–9.

    PubMed  CAS  Google Scholar 

  28. Yamashita K, Ohkura T, Tachibana Y et al. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984; 259: 10834–40.

    PubMed  CAS  Google Scholar 

  29. Dennis JW, Kosh K, Bryce DM et al. Oncogenes conferring metastatic potential induce increased branching of Asn-linked oligosaccharides in rat2 fibroblasts. Oncogene 1989; 4: 853–60.

    PubMed  CAS  Google Scholar 

  30. Yagel S, Feinmesser R, Waghorne C et al. Evidence that β1,6 branched Asn-linked oligosaccharides on metastatic tumor cells facilitate invasion of basement membranes. Int J Cancer 1989; 44: 685–90.

    PubMed  CAS  Google Scholar 

  31. Goss PE, Reid CL, Bailey D et al. Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res 1997; 3: 1077–86.

    PubMed  CAS  Google Scholar 

  32. Liotta LA, Steeg PS, Steetler-Stevenson WG. Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 1991; 64: 327–36.

    PubMed  CAS  Google Scholar 

  33. Ruoslahti E, Giancotti FG. Integrin and tumor cell dissemination. Cancer Cells 1989; 1: 119–26.

    PubMed  CAS  Google Scholar 

  34. Albelda SM. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 1993; 68: 4–17.

    PubMed  CAS  Google Scholar 

  35. Holly SP, Larson MK, Parise LV. Multiple roles of integrins in cell motility. Exp Cell Res 2000; 261: 69–74.

    PubMed  CAS  Google Scholar 

  36. Mercurio AM, Bachelder RE, Rabinovitz I et al. The metastatic odyssey: the integrin connection. Surg Oncol Clin N Am 2001; 10: 313–28.

    PubMed  CAS  Google Scholar 

  37. Laferte S, Dennis JW. Glycosylation-dependent collagen-binding activities of two membrane glycoproteins. Cancer Res 1988; 48: 4743–8.

    PubMed  CAS  Google Scholar 

  38. Aznavoorian S, Murphy AN, Stetler-Stevenson WG. Molecular aspects of tumor cell invasion and metastasis. Cancer 1993; 71: 1368–83.

    PubMed  CAS  Google Scholar 

  39. Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)-lipid metabolism. Cancer Res 1996; 56: 5309–18.

    PubMed  CAS  Google Scholar 

  40. Guo HB, Zhang Y, Chen HL. Relationship between metastasisassociated phenotypes and N-glycan structure of surface glycoproteins in human hepatocarcinoma cells. J Cancer Res Clin Oncol 2001; 127: 231–6.

    PubMed  CAS  Google Scholar 

  41. Do KY, Cummings RD. 2,6 branched mannose and the regulation of poly N-acetyl lactosamine biosynthesis in N-linked oligosaccharides of chinese hamster ovary cells. J Biol Chem 1993; 268: 22028–35.

    PubMed  CAS  Google Scholar 

  42. Zhou Q, Cummings RD. L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch Biochem Biophys 1993; 300: 6–17.

    PubMed  CAS  Google Scholar 

  43. Fukushima K, Hirota M, Terasaki PI et al. Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res 1984; 44: 5279–85.

    PubMed  CAS  Google Scholar 

  44. Taniguchi N, Nishikawa A, Fujii S et al. Glycosyltransferase assays using pyridylaminated acceptors: N-acetylglucosaminyl transferase III, IV, and V. Methods Enzymol 1989; 79: 397–408.

    Google Scholar 

  45. Walz G, Aruffo A, Kolanus W et al. Recognition by ELAM1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990; 250: 1132–5.

    PubMed  CAS  Google Scholar 

  46. Phillips ML, Nudelman E, Gaeta FC et al. ELAM-1mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 1990; 250: 1130–2.

    PubMed  CAS  Google Scholar 

  47. Lowe JB, Stoolman LM, Nair RP et al. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 1990; 63: 475–84.

    PubMed  CAS  Google Scholar 

  48. Yago K, Zenita K, Ginya H et al. Expression of α-(1,3)-fucosyltransferases which synthesize sialyl Lex and sialyl Lea, the carbohydrate ligands for E-and P-selectins, in human malignant cell lines. Cancer Res 1993; 53: 5559–65.

    PubMed  CAS  Google Scholar 

  49. Lu Y, Chaney W. Induction of N-acetylglucoasminyltransferase V by elevated expression of activated or proto-Ha-ras oncogenes. Mol Cell Biochem 1993; 122: 85–92.

    PubMed  CAS  Google Scholar 

  50. Ohyama C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewisx oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J 1999; 18: 1516–25.

    PubMed  CAS  Google Scholar 

  51. Granovsky M, Fata J, Pawling J et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nature Med 2000; 6: 306–12.

    PubMed  CAS  Google Scholar 

  52. Schaller MD, Otey CA, Hildebrand JD et al. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 1995; 130: 1181–7.

    PubMed  CAS  Google Scholar 

  53. Yamashita K, Tachibana Y, Ohkura T et al. Enzymatic basis from the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 1985; 260: 3963–9.

    PubMed  CAS  Google Scholar 

  54. Sarafian V, Jadot M, Foidart JM et al. Expression of LAMP-1 and LAMP-2 and their interactions with galectin 3 in human tumor cells. Int J Cancer 1998; 75: 105–11.

    PubMed  CAS  Google Scholar 

  55. Sawada R, Lowe JB, Fukuda M. E-selectin dependent adhesion efficiency of colonic-carcinoma cells is increased by genetic manipulation of their cell surface lysosomal membrane glycoprotein-1 expression levels. J Biol Chem 1991; 268: 12675–81.

    Google Scholar 

  56. Inohara H, Raz A. Identification of human melanoma cellular and secreted ligands for galectin-3. Biochem Biophys Res Commun 1994; 201: 1366–75.

    PubMed  CAS  Google Scholar 

  57. Saitoh O, Wang WC, Lotan R et al. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 1992; 267: 5700–11.

    PubMed  CAS  Google Scholar 

  58. Chammas R, Veiga SS, Travassos LR et al. Functionally distinct roles for glycosylation of alpha and beta integrin chains in cellmatrix interactions. Proc Natl Acad Sci USA 1993; 90: 1795–9.

    PubMed  CAS  Google Scholar 

  59. Zheng M, Fang H, Hakomori S. Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. J Biol Chem 1994; 269: 12325–31.

    PubMed  CAS  Google Scholar 

  60. Leppa S, Heino J, Jalkanen M. Increased glycosylation of beta 1 integrin affects the interaction of transformed s115 mammary epithelial cells with laminin-1. Cell Growth Differ 1995; 6: 853–61.

    PubMed  CAS  Google Scholar 

  61. Yamamoto H, Swoger J, Greene S et al. β1,6,N-acetyl-glucosamine bearing N-glycans in human gliomas; implications for role in regulating invasivity. Cancer Res 2000; 60: 134–42.

    PubMed  CAS  Google Scholar 

  62. Van Waes C. Cell adhesion and regulatory molecules involved in tumor formation, homeostasis, and wound healing. Head & Neck 1995; 17: 140–7.

    CAS  Google Scholar 

  63. Giannelli G, Astigiano S, Antonaci S et al. Role of the alpha3beta1 and alpha6beta4 integrins in tumor invasion. Clin Exp Metastasis 2002; 19: 217–23.

    PubMed  CAS  Google Scholar 

  64. Cooper CR, Chay CH, Pienta KJ. The Role of alpha(v)beta(3) in Prostate Cancer Progression. Neoplasia 2002; 4:191–4.

    PubMed  CAS  Google Scholar 

  65. Morini M, Mottolese M, Ferrari N et al. The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion and gelatinase B (MMP-9 activity). Int J Cancer 2000; 87: 336–42.

    PubMed  CAS  Google Scholar 

  66. Akiyama SK, Yamada SS, Chen WT et al. Analysis of FN receptor function with monoclonal antibodies: Roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 1989; 109: 863–75.

    PubMed  CAS  Google Scholar 

  67. Werb Z, Tremble PM, Behrendsten O et al. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 1989; 109: 877–89.

    PubMed  CAS  Google Scholar 

  68. Wu C. Roles of integrins in fibronectin matrix assembly. Histol Histopathol 1997; 12: 233–40.

    PubMed  CAS  Google Scholar 

  69. Lussier C, Basora N, Bouatrouss Y et al. Integrins as mediators of epithelial cell-matrix interactions in the human small intestinal mucosa. Microsc Res Tech 2000; 51: 169–78.

    PubMed  CAS  Google Scholar 

  70. Nguyen BP, Ryan MC, Gil SG et al. Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr Opin Cell Biol 2000; 12: 554–62.

    PubMed  CAS  Google Scholar 

  71. Haslam SZ, Woodward TL Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Res 2001; 3: 365–72.

    PubMed  CAS  Google Scholar 

  72. Danen EHJ, Ten Berge PJM, Van Muijen GNP et al. Emergence of α5β1 fibronectin-and αvβ3 vitronectin-receptor expression in melanocytic tumor progression. Histopathology 1994; 24: 249–56.

    PubMed  CAS  Google Scholar 

  73. Libert M, Washington R, Stein J et al. Expression of the VLAβ1 integrin family in bladder cancer. Am J Pathol 1994; 144: 1016–22.

    Google Scholar 

  74. Natali PG, Nicorta MR, Di Filippo F et al. Expression of fibronectin, fibronectin isoforms and integrin receptors in transformed mouse epidermal keratinocytes: Upregulation of α5β1 in spindle carcinoma cells. Mol Carcinogenesis 1995; 12: 153–65.

    Google Scholar 

  75. Gomez M, Cano A. Expression of beta 1 integrin receptors in transformed mouse epidermal keratinocytes: Upregulation of α5β1 in spindle carcinoma cells. Mol Carcinogenesis 1995; 12: 153–65.

    CAS  Google Scholar 

  76. Lessey BA, Albelda S, Buck CA et al. Distribution of integrin cell adhesion molecules in endometrial cancer. Am J Pathol 1995; 146: 717–26.

    PubMed  CAS  Google Scholar 

  77. Schiller JH, Bittner G. Loss of the tumorigenic phenotype with in vitro, but in vivo, passaging of a novel series of human bronchial epithelial cell lines: Possible role of an α5β1 integrin-fibronectin interaction. Cancer Res 1995; 55: 6215–21.

    PubMed  CAS  Google Scholar 

  78. Dedhar S, Argraves WS, Suzuki S et al. Human osteosarcoma cells resistant to detachment by an Arg-Gly-Asp-containing peptide overproduce the fibronectin receptor. J Cell Biol 1987; 105: 1175–82.

    PubMed  CAS  Google Scholar 

  79. Plantefaber LC, Hynes RO. Changes in integrin receptor on oncogenically transformed cell. Cell 1989; 56: 281–90.

    PubMed  CAS  Google Scholar 

  80. Giancotti FG, Ruoslahti E. Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 1990; 60: 849–59.

    PubMed  CAS  Google Scholar 

  81. Tennebaum T, Yuspa SH, Grover A et al. Extracellular matrix receptors and mouse skin carcinogenesis: Altered expression linked to appearance of early markers of tumor progression. Cancer Res 1992; 52: 2966–76.

    Google Scholar 

  82. Cheresh D, Smith J, Cooper H et al. A novel vitronectin receptor integrin (αvβx) is responsible for distinct adhesion properties of carcinoma cells. Cell 1989; 57: 59–69.

    PubMed  CAS  Google Scholar 

  83. Gladson CL, Cheresh DA. Glioblastoma expression of vitronectin and the αvβ3 integrin. J Clin Invest 1991; 88: 1924–32.

    Article  PubMed  CAS  Google Scholar 

  84. Natali PG, Hamby CV, Felding-Haberman B et al. Clinical significance of v3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 1997; 57: 1554–60.

    PubMed  CAS  Google Scholar 

  85. Wong NC, Mueller BM, Barbas CF et al. Alpha V integrins mediate adhesion and migration of breast carcinoma. Clin Exp Metastasis 1998; 16: 50–61.

    PubMed  CAS  Google Scholar 

  86. Felding-Habermann B, O'Toole TE, Smith JW et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 2001; 98: 1853–8.

    PubMed  CAS  Google Scholar 

  87. Hynes RO. Integrins; versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.

    PubMed  CAS  Google Scholar 

  88. Humphries MJ, Matsumoto K, White SL et al. Inhibition of experimental metastasis by castanospermine in mice: Blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res 1986; 46: 5215–22.

    PubMed  CAS  Google Scholar 

  89. Juliano RL. The role of beta 1 integrins in tumors. Semin Cancer Biol 1993; 4: 277–83.

    PubMed  CAS  Google Scholar 

  90. Dennis JW, Waller C, Timpl R et al. Sialic acid on metastatic tumor cells reduces cell attachment to fibronectin and collagen type IV. Nature 1982; 300: 274–6.

    PubMed  CAS  Google Scholar 

  91. Cornil I, Kerbel RS, Dennis JW. Tumor-cell surface β1,4-linked galactose binds to lectin(s) on microvascular endothelial cells and contributes to organ colonization. J Cell Biol 1990; 111: 773–82.

    PubMed  CAS  Google Scholar 

  92. Dennis JW, Koch K, Yousefi S et al. Growth inhibition of human melanoma tumor xenografts in athymic nude mice by swainsonine. Cancer Res 1990; 50: 1867–72.

    PubMed  CAS  Google Scholar 

  93. Seftor REB, Seftor EA, Grimes WJ et al. Human melanoma cell invasion is inhibited in vitro by swainsonine and deoxymannojirimycin with a concomitant decrease in collagenase IV expression. Melanoma Res 1991; 1: 43–54.

    PubMed  CAS  Google Scholar 

  94. VanderElst I, Dennis JW. N-linked oligosaccharide processing and autocrine-stimulation of tumor-cell proliferation. Exp Cell Res 1991; 192: 612–3.

    PubMed  CAS  Google Scholar 

  95. Matrisian LM. The matrix-degrading metalloproteinases. BioEssays 1992;14: 455–63.

    PubMed  CAS  Google Scholar 

  96. Cottam DW, Rees RC. Regulation of matrix metalloproteinases: Their role in tumor invasion and metastasis (Rev). Int J Surg Oncol 1993; 2: 861–72.

    CAS  Google Scholar 

  97. Liotta LA, Tryggvasan K, Garbisa S et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 67–8.

    PubMed  CAS  Google Scholar 

  98. Murphy G, Reynolds JJ, Hembry RM. Metalloproteinases and cancer invasion and metastasis. Int J Cancer 1989; 44: 757–60.

    PubMed  CAS  Google Scholar 

  99. Monteagudo C, Merino MJ, San-Juam J et al. Immunochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 1990; 136: 585–92.

    PubMed  CAS  Google Scholar 

  100. Nakajima M, Welch DR, Wynn DM et al. Serum and Plasma M(r) 92,0000 progelatinase levels correlate with spontaneous metastasis of rat 13762 NF mammary adenocarcinoma. Cancer Res 1993; 53: 5802–7.

    PubMed  CAS  Google Scholar 

  101. Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92 kda gelatinase/ collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 1994; 91: 4293–7.

    PubMed  CAS  Google Scholar 

  102. Baker T, Tickle S, Wasan H et al. Serum metallo-proteinases and their inhibitors: Markers for malignant potential. Br J Cancer 1994; 70: 506–12.

    PubMed  CAS  Google Scholar 

  103. Hofmann UB, Westphal JR, Van Muijen GN et al. Matrix metalloproteinases in human melanoma. J Invest Dermatol 2000; 115: 337–44.

    PubMed  CAS  Google Scholar 

  104. Werner JA, Rathcke IO, Mandic R. The role of matrix metalloproteinases in squamous cell carcinoma of the head and neck. Clin Exp Metastasis 2002; 19: 275–82.

    PubMed  CAS  Google Scholar 

  105. Egeblad M, Werb Z. New Functions for the matrix metalloproteinase in cancer progression. Nat Rev Cancer 2002; 2: 161–74.

    PubMed  CAS  Google Scholar 

  106. Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. Int J Cancer 2002; 99: 157–66.

    PubMed  CAS  Google Scholar 

  107. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metallo-proteinases in cancer. Oncogene 2002; 21: 2245–52.

    PubMed  CAS  Google Scholar 

  108. Seftor REB, Seftor EA, Stetler-Stevenson WG et al. The 72 kDa type IV collagenase is modulated via differential expression of αvβ3 and α5β1 integrins during human melanoma cells invasion. Cancer Res 1993; 53: 3411–5.

    PubMed  CAS  Google Scholar 

  109. Seftor REB, Seftor EA, Gehlsen KR et al. Role of the αvβ3 integrin in tumor cell invasion. Proc Natl Acad Sci USA 1992; 89: 1557–61.

    PubMed  CAS  Google Scholar 

  110. Korczak B, Dennis JW. Inhibition of N-linked oligosaccharides processing in tumor cells is associated with enhanced tissue inhibitor of metalloproteinases (TIMP) gene expression. Int J Cancer 1993; 53: 634–9.

    PubMed  CAS  Google Scholar 

  111. Ihara S, Miyoshi E, Ko JH et al. Prometastatic effect of Nacetylgucosaminyl-transferase V is due to modification and stabilization of active matriptase by adding β16-GlcNAc branching. J Biol Chem 2002; 277: 16960–7.

    PubMed  CAS  Google Scholar 

  112. Fukuda M. Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochem Biophys Acta 1985; 780: 119–50.

    PubMed  CAS  Google Scholar 

  113. Fukuda M, Spooncer E, Oates JE et al. Structure of sialylated fucosyl lactos-aminoglycan isolated from human granulocytes. J Biol Chem 1984; 259: 10925–35.

    PubMed  CAS  Google Scholar 

  114. Arango J, Pierce M. Comparison of N-Acetylglucosaminyltransferase V activities in rous sarcoma-transformed baby hamster kidney (RS-BHK) and BHK cells. J Cell Biochem 1988; 37: 225–31.

    PubMed  CAS  Google Scholar 

  115. Shimodaira K, Nakayama J, Nakamura N et al. Carcinoma assisted expression of core 2 β-1,6-N-acetylglucosaminyl-transferase gene in human colorectal cancer: Role of O-glycans in tumor progression. Cancer Res 1997; 57: 5201–6.

    PubMed  CAS  Google Scholar 

  116. Sodi SA, Chakraborty AK, Platt JT et al. Melanoma × macrophage fusion hybrids acquire increased melanogenesis and metastatic potential: Altered N-glycosylation as an underlying mechanism. Pigment Cell Res 1998; 11: 299–309.

    PubMed  CAS  Google Scholar 

  117. Pawelek J, Chakraborty AK, Rachkovsky ML et al. Altered Nglycosylation in macrophage × melanoma fusion hybrids. Cell Mol Biol 1999; 45: 1011–27.

    PubMed  CAS  Google Scholar 

  118. Gauci CL, Alexander P. The macrophage content of some human tumor. Cancer Lett 1975; 1: 29–32.

    PubMed  CAS  Google Scholar 

  119. Savill J, Fadok V, Henson P et al. Phagocyte recognition of cells undergoing apoptosis. Immunol Today 1993; 14: 131–6.

    PubMed  CAS  Google Scholar 

  120. Fidler IJ, Schroit AJ. Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self (Rev). Biochim Biophys Acta 1988; 948: 151–73.

    PubMed  CAS  Google Scholar 

  121. Whitworth PW, Pak CC, Esgro J et al. Macrophages and cancer. Cancer Metastasis Rev 1990; 8: 319–51.

    PubMed  CAS  Google Scholar 

  122. van Netten JP, George EJ, Ashmead BJ et al. Macrophage-tumor cell associations in breast cancer. Lancet 1993; 342: 872–3.

    PubMed  CAS  Google Scholar 

  123. van Netten JP, Ashmead BJ, Parker RL et al. Macrophage-tumor cell associations: A factor in metastasis of breast cancer? J Leuk Biol 1993a; 54: 360–2.

    CAS  Google Scholar 

  124. Wang Q, Zhou D, Shao D et al. Effects of epidermal growth factor and insulin on the activity of N-acetylglucosamine transferase V. Biochem J 1997; 324: 543–5.

    PubMed  CAS  Google Scholar 

  125. Buckhaults P, Chen L, Friegen N et al. Transcriptional regulation of N-acetyl-glucosaminyltransferase V by the src oncogene. J Biol Chem 1997; 272: 19575–81.

    PubMed  CAS  Google Scholar 

  126. Chen L, Zhang W, Fregien N et al. The her-2/neu oncogene stimulates the transcription of N-acetylglucoasminyltransferase V and expression of its cell surface oligosccharides products. Oncogene 1998; 17: 2087–93.

    PubMed  CAS  Google Scholar 

  127. Chakraborty AK, Pawelek J, Ikeda Y et al. Fusion hybrids with macrophage and melanoma cells up-regulate N-acetylglucoaminyl transferase V, β1-6 branching, and metastasis. Cell Growth and Differ 2001; 12: 623–30.

    CAS  Google Scholar 

  128. Rachkovsky M, Sodi S, Chakraborty AK et al. Melanoma × macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 1998; 16: 299–312.

    PubMed  CAS  Google Scholar 

  129. Chakraborty AK, de Freitas Sousa J, Esprefico EM et al. Human monocyte × mouse melanoma fusion hybrids express human gene. Gene 2001a; 275: 103–6.

    PubMed  CAS  Google Scholar 

  130. Most J, Spotl L, Mayr G et al. Foundation of multinucleated giant cells in vitro is dependent on the stage of monocyte to macrophage maturation. Blood 1997; 89: 662–71.

    PubMed  CAS  Google Scholar 

  131. Wakeling WF, Greetham J, Bennett DC. Efficient spontaneous fusion between some co-cultured cells, especially murine melanoma cells. Cell Biol Int 1994; 18: 207–10.

    PubMed  CAS  Google Scholar 

  132. Roos E, La Riviera G, Collard JG et al. Invasiveness of T-cell hybridomas in vitro and their metastatic potential in vivo. Cancer Res 1985; 45: 6238–43.

    PubMed  CAS  Google Scholar 

  133. Lagarde AE, Kerbel RS. Somatic cell hybridization in vivo and in vitro in relation to the metastatic phenotype. Biochim Biophys Acta 1985; 823: 81–110.

    PubMed  CAS  Google Scholar 

  134. Lagarde AE. Sporadic somatic fusion between MDAY-D2 murine tumor cells and DBA/2 host cells: Role in metastasis. Int J Cancer 1986; 37: 905–10.

    PubMed  CAS  Google Scholar 

  135. Munzarova M, Kovrik J. Is cancer a macrophage-mediated auto aggressive disease? Lancet 1987; 1: 952–4.

    PubMed  CAS  Google Scholar 

  136. Munzarova M, Lauerova L, Capkova J. Are advanced malignant melanoma cells hybrids between melanocytes and macrophages? Melanoma Res 1992; 2: 127–9.

    Article  PubMed  CAS  Google Scholar 

  137. Mantovani A, Bottazzi B, Colotta F et al. The origin and function of tumor-associated macrophages. Immunol Today 1992; 13: 265–70.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Pawelek, J. GnT-V, macrophage and cancer metastasis: A common link. Clin Exp Metastasis 20, 365–373 (2003). https://doi.org/10.1023/A:1024007915938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024007915938

Navigation