Skip to main content
Log in

Mechanisms in Epithelial Plasticity and Metastasis: Insights from 3D Cultures and Expression Profiling

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Most human tumors are of epithelial origin (carcinomas) and metastases from such tumors lead to <80% of all cancer deaths. In contrast to aberrant control of proliferation, cell cycle, apoptosis, angiogenesis, and lifespan, mechanisms involved in local invasion and metastasis are still insufficiently understood. We will review a set of (often conflicting) in vitro/in vivo data that suggest the existence of several types of epithelial cell plasticity changes towards a fibroblastoid, invasive phenotype, which increasingly emerge as crucial events during metastasis. New cellular models were identified, which form organotypic structures under near-physiological 3D-culture conditions in vitro as well as tumors/metastases in vivo. In these models, key proteins and signaling pathways were identified (e.g., TGFβ, ERK/MAPK, PI3K, and PDGF), which specify distinct types of epithelial plasticity correlated with steps in cancer progression and metastasis. The existence of several distinct epithelial plasticity phenotypes is also strongly suggested by expression profiling of polysome-bound mRNA, yielding a better representation of the proteome than conventional expression profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Hunter (1997). Oncoprotein networks. Cell 88:333–346.

    Google Scholar 

  2. D. Hanahan, and R. A. Weinberg (2000). The hallmarks of cancer. Cell 100:57–70.

    Google Scholar 

  3. B. Elenbaas and R. A. Weinberg (2001). Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 264:169–184.

    Google Scholar 

  4. B. Elenbaas, L. Spirio, F. Koerner, M. D. Fleming, D. B. Zimonjic, J. L. Donaher, N. C. Popescu, W. C. Hahn, and R. A. Weinberg (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15:50–65.

    Google Scholar 

  5. J. P. Thiery (2002). Epithelial- mesenchymal transitions in tumour progression. Nat. Res. Cancer 2:442–454.

    Google Scholar 

  6. C. Cordon-Cardo and C. Prives (1999). At the crossroads of inflammation and tumorigenesis. J. Exp. Med. 190:1367–1370.

    Google Scholar 

  7. E. D. Hay (1995). An overview of epithelio-mesenchymal transition. Acta Anat. 154:8–20.

    Google Scholar 

  8. E. Janda, K. Lehmann, I. Killisch, M. Jechlinger, M. Herzig, J. Downward, H. Beug, and S. Grunert (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. J. Cell Biol. 156:299–313.

    Google Scholar 

  9. C. Viebahn (1995). Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat. 154:79–97.

    Google Scholar 

  10. D. Sun, S. Baur and E. D. Hay (2000). Epithelial- mesenchymal transformation is the mechanism for fusion of the craniofacial primordia involved in morphogenesis of the chicken lip. Dev. Biol. 228:337–349.

    Google Scholar 

  11. C. Martinez-Alvarez, C. Tudela, J. Perez-Miguelsanz, S. O'Kane, J. Puerta, and M. W. Ferguson (2000). Medial edge epithelial cell fate during palatal fusion. Dev. Biol. 220:343–357.

    Google Scholar 

  12. J. L. Duband, F. Monier, M. Delannet, and D. Newgreen (1995). Epithelium- mesenchyme transition during neural crest development. Acta Anat. 154:63–78.

    Google Scholar 

  13. L. Vicovac and J. D. Aplin (1996). Epithelial- mesenchymal transition during trophoblast differentiation. Acta Anat. 156:202–216.

    Google Scholar 

  14. D. Knight (2001). Epithelium- fibroblast interactions in response to airway inflammation. Immunol. Cell Biol. 79:160–164.

    Google Scholar 

  15. C. E. Alpers, K. L. Hudkins, S. Segerer, E. H. Sage, R. Pichler, W. G. Couser, R. J. Johnson, and J. H. Bassuk (2002). Localization of SPARC in developing, mature, and chronically injured human allograft kidneys. Kidney Int. 62:2073–2086.

    Google Scholar 

  16. D. S. Goumenos, A. C. Tsamandas, A. M. El Nahas, G. Thomas, S. Tsakas, F. Sotsiou, D. S. Bonikos, and J. G. Vlachojannis (2002). Apoptosis and myofibroblast expression in human glomerular disease:Apossible link with transforming growth factor-beta-1. Nephron 92:287–296.

    Google Scholar 

  17. S. T. Holgate (2000). Epithelial damage and response. Clin.Exp. Allergy 30(Suppl 1):37–41.

    Google Scholar 

  18. M. Bauer and D. Schuppan (2001). TGFbeta1 in liver fibrosis: Time to change paradigms? FEBS Lett. 502:1–3.

    Google Scholar 

  19. J. Yang and Y. Liu (2002). Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J. Am. Soc. Nephrol. 13:96–107.

    Google Scholar 

  20. H. Y. Zhang, M. Gharaee-Kermani, K. Zhang, S. Karmiol, and S. H. Phan (1996). Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 148:527–537.

    Google Scholar 

  21. C. Birchmeier, W. Birchmeier, and B. Brand-Saberi (1996). Epithelial- mesenchymal transitions in cancer progression. Acta Anat. 156:217–226.

    Google Scholar 

  22. G. Christofori and H. Semb (1999). The role of the cell adhesion molecule E cadherin as a tumour suppressor gene. Trends Biochem. Sci. 24:73–76.

    Google Scholar 

  23. L. Schwartz, J. Balosso, F. Baillet, B. Brun, J. P. Amman, and A. J. Sasco (2002). Cancer: The role of extracellular disease. Med. Hypotheses 58:340–346.

    Google Scholar 

  24. O. W. Petersen, H. L. Nielsen, T. Gudjonsson, R. Villadsen, F. Rank, E. Niebuhr, M. J. Bissell, and L. Ronnov-Jessen (2003). Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma.Am.J.Pathol. 162:391–402.

    Google Scholar 

  25. E. Putz, K. Witter, S. Offner, P. Stosiek, A. Zippelius, J. Johnson, R. Zahn, G. Riethmuller, and K. Pantel (1999). Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: Establishment of working models for human micrometastases. Cancer Res. 59:241–248.

    Google Scholar 

  26. M. Oft, K. H. Heider, and H. Beug (1998). TGFβ signalling is essential for carcinoma cell invasiveness and metastasis. Curr. Biol. 8:1243–1252.

    Google Scholar 

  27. T. Brabletz, K. Herrmann, A. Jung, G. Faller, and T. Kirchner (2000). Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am. J. Pathol. 156:865–870.

    Google Scholar 

  28. T. Brabletz, A. Jung, S. Reu, M. Porzner, F. Hlubek, L. A. Kunz-Schughart, R. Knuechel, and T. Kirchner (2001). Variable betacatenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. U.S.A. 98:10356–10361.

    Google Scholar 

  29. A. Khwaja, K. Lehmann, B. M. Marte, and J. Downward (1998). Phosphoinositide 3-kinase induces scattering and tubulogenesis in epithelial cells through a novel pathway. J. Biol. Chem. 273:18793–18801.

    Google Scholar 

  30. C. Niemann, V. Brinkmann, E. Spitzer, G. Hartmann, M. Sachs, H. Naundorf, and W. Birchmeier (1998). Reconstitution of mammary gland development in vitro: Requirement of c-met and c-erbB2 signaling for branching and alveolar morphogenesis. J. Cell Biol. 143:533–545.

    Google Scholar 

  31. C. A. Schoenenberger, A. Zuk, D. Kendall, and K. S. Matlin (1991). Multilayering and loss of apical polarity inMDCKcells transformed with viral K-ras. J. Cell Biol. 112:873–889.

    Google Scholar 

  32. S. H. Hansen, M. M. Zegers, M. Woodrow, P. Rodriguez-Viciana, P. Chardin, K. E. Mostov, and M. McMahon (2000). Induced expression of rnd3 is associated with transformation of polarized epithelial cells by the raf-MEK-extracellular signalregulated kinase pathway. Mol. Cell. Biol. 20:9364–9375.

    Google Scholar 

  33. S. K. Muthuswamy, D. Li, S. Lelievre, M. J. Bissell, and J. S. Brugge (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3:785–792.

    Google Scholar 

  34. S. Potempa and A. J. Ridley (1998). Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell 9:2185–2200.

    Google Scholar 

  35. S. Tanimura, Y. Chatani, R. Hoshino, M. Sato, S. Watanabe, T. Kataoka, T. Nakamura, and M. Kohno (1998). Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering. Oncogene 17:57–65.

    Google Scholar 

  36. I. Royal and M. Park (1995). Hepatocyte growth factor-induced scatter of Madin- Darby canine kidney cells requires phosphatidylinositol 3-kinase. J. Biol. Chem. 270:27780–27787.

    Google Scholar 

  37. B. Boyer, S. Dufour, and J. P. Thiery (1992). E-cadherin expression during the acidic FGF-induced dispersion of a rat bladder carcinoma cell line. Exp. Cell Res. 201:347–357.

    Google Scholar 

  38. J. M. Rodier, A. M. Valles, M. Denoyelle, J. P. Thiery, and B. Boyer (1995). pp60c-src is a positive regulator of growth factor-induced cell scattering in a rat bladder carcinoma cell line. J. Cell Biol. 131:761–773.

    Google Scholar 

  39. Y. Chen, Q. Lu, E. E. Schneeberger, and D. A. Goodenough (2000). Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin- Darby canine kidney cells. Mol. Biol. Cell 11:849–862.

    Google Scholar 

  40. G. C. Zondag, E. E. Evers, J. P. ten Klooster, L. Janssen, R. A. van der Kammen, and J. G. Collard (2000). Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial- mesenchymal transition. J. Cell Biol. 149:775–782.

    Google Scholar 

  41. C. Van den Broecke, K. Vleminckx, G. De Bruyne, L. Van Hoorde, L. Vakaet, F. Van Roy, and M. Mareel (1996). Morphotypic plasticity in vitro and in nude mice of epithelial mouse mammary cells (NMuMG) displaying an epithelioid (e) or a fibroblastic (f) morphotype in culture. Clin. Exp. Metastasis 14:282–296.

    Google Scholar 

  42. N. Edme, J. Downward, J. P. Thiery, and B. Boyer (2002). Ras inducesNBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. J. Cell Sci. 115:2591–2601.

    Google Scholar 

  43. P. J. Miettinen, R. Ebner, A. R. Lopez, and R. Derynck (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: Involvement of type I receptors. J. Cell Biol. 127:2021–2036.

    Google Scholar 

  44. E. Piek, A. Moustakas, A. Kurisaki, C. H. Heldin, and P. ten Dijke (1999). TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci. 112:4557–4568.

    Google Scholar 

  45. A. V. Bakin, A. K. Tomlinson, N. A. Bhowmick, H. A. Moses, and C. L. Arteaga (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor b-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275:36803–36810.

    Google Scholar 

  46. N. A. Bhowmick, M. Ghiassi, A. Bakin, M. Aakre, C. A. Lundquist, M. E. Engel, C. L. Arteaga, and H. L. Moses (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12:27–36.

    Google Scholar 

  47. N. A. Bhowmick, R. Zent, M. Ghiassi, M. McDonnell, and H. L. Moses (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 276:46707–46713.

    Google Scholar 

  48. J. Gotzmann, H. Huber, C. Thallinger, M. Wolschek, B. Jansen, R. Schulte-Hermann, H. Beug, and W. Mikulits (2002). Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: Steps towards invasiveness. J. Cell Sci. 115:1189–1202.

    Google Scholar 

  49. M. Oft, J. Peli, C. Rudaz, H. Schwarz, H. Beug, and E. Reichmann (1996). TGFβ1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10:2462–2477.

    Google Scholar 

  50. E. Reichmann, H. Schwarz, E. M. Deiner, I. Leitner, M. Eilers, J. Berger, M. Busslinger, and H. Beug (1992). Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial- fibroblastoid cell conversion. Cell 71:1103–1116.

    Google Scholar 

  51. A. Eger, A. Stockinger, B. Schaffhauser, H. Beug, and R. Foisner (2000). Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J. Cell Biol. 148:173–188.

    Google Scholar 

  52. K. Lehmann, E. Janda, C. E. Pierreux, M. Rytomaa, A. Schulze, M. McMahon, C. S. Hill, H. Beug, and J. Downward (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: A mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14:2610–2622.

    Google Scholar 

  53. C. A. Schoenenberger, A. Zuk, G. Zinkl, D. Kendall, and K. Matlin (1994). Integrin expression and localization in normal MDCK cells and transformed MDCK cells lacking apical polarity. J. Cell Sci. 107:527–541.

    Google Scholar 

  54. E. Janda, G. Litos, S. Grunert, J. Downward, and H. Beug (2002). Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway. Oncogene 21:5148–5159.

    Google Scholar 

  55. I. Fialka, H. Schwarz, E. Reichmann, M. Oft, M. Busslinger, and H. Beug (1996). The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132:1115–1132.

    Google Scholar 

  56. D. Sun, C. R. Vanderburg, G. S. Odierna, and E. D. Hay (1998). TGFbeta3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro. Development 125:95–105.

    Google Scholar 

  57. W. Cui, D. J. Fowlis, S. Bryson, E. Duffie, H. Ireland, A. Balmain, and R. J. Akhurst (1996). TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542.

    Google Scholar 

  58. J. Peli, M. Schroter, C. Rudaz, M. Hahne, C. Meyer, E. Reichmann, and J. Tschopp (1999). Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J. 18:1824–1831.

    Google Scholar 

  59. R. Montesano, J. Soriano, I. Fialka, and L. Orci (1998). Isolation of EpH4 mammary epithelial cell subpopulations which differ in their morphogenetic properties. In Vitro Cell. Dev. Biol. 34:468–477.

    Google Scholar 

  60. R. Derynck and X. H. Feng (1997). TGF-beta receptor signaling. Biochim. Biophys. Acta 1333:F105–F150.

    Google Scholar 

  61. J. Massagué (1998). TGF-β signal transduction. Annu. Rev. Biochem. 67:753–791.

    Google Scholar 

  62. R. Derynck, R. J. Akhurst, and A. Balmain (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29:117–129.

    Google Scholar 

  63. P. Ten Dijke, M. J. Goumans, F. Itoh, and S. Itoh (2002). Regulation of cell proliferation by Smad proteins. J. Cell. Physiol. 191:1–16.

    Google Scholar 

  64. K. Takaku, M. Oshima, H. Miyoshi, M. Matsui, M. F. Seldin, and M. M. Taketo (1998). Intestinal tumorigenesis incompound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656.

    Google Scholar 

  65. S. Jacob and F. Praz (2002).DNAmismatch repair defects: Role in colorectal carcinogenesis. Biochimie 84:27–47.

    Google Scholar 

  66. M. P. de Caestecker, E. Piek, and A. B. Roberts (2000). Role of transforming growth factor-beta signaling in cancer. J. Natl. Cancer Inst. 92:1388–1402.

    Google Scholar 

  67. R. J. Akhurst and R. Derynck (2001). TGFb signaling in cancer—A double-edged sword. Trends Cell Biol. 11:S44–S51.

    Google Scholar 

  68. L. Attisano and J. L. Wrana (2002). Signal transduction by the TGF-beta superfamily. Science 296:1646–1647.

    Google Scholar 

  69. C. Petritsch, H. Beug, A. Balmain, and M. Oft (2000). TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev. 14:3093–3101.

    Google Scholar 

  70. C. H. Heldin and B. Westermark (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283–1316.

    Google Scholar 

  71. A. Schulze, K. Lehmann, H. B. Jefferies, M. McMahon, and J. Downward (2001). Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15:981–994.

    Google Scholar 

  72. R. S. Beddington and E. J. Robertson (1999). Axis development and early asymmetry in mammals. Cell 96:195–209.

    Google Scholar 

  73. B. Ciruna and J. Rossant (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell. 1:37–49.

    Google Scholar 

  74. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  75. R. S. Muraoka, N. Dumont, C. A. Ritter, T. C. Dugger, D. M. Brantley, J. Chen, E. Easterly, L. R. Roebuck, S. Ryan, P. J. Gotwals, V. Koteliansky, and C. L. Arteaga (2002). Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109:1551–1559.

    Google Scholar 

  76. P. Rodriguez-Viciana, P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467.

    Google Scholar 

  77. J. Downward (1998). Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10:262–267.

    Google Scholar 

  78. B. Pradet-Balade, F. Boulme, H. Beug, E. W. Mullner, and J. A. Garcia-Sanz (2001). Translation control: Bridging the gap between genomics and proteomics? Trends Biochem. Sci. 26:225–229.

    Google Scholar 

  79. D. T. Ross, U. Scherf, M. B. Eisen, C. M. Perou, C. Rees, P. Spellman, V. Iyer, S. S. Jeffrey, M. Van de Rijn, M. Waltham, A. Pergamenschikov, J. C. Lee, D. Lashkari, D. Shalon, T. G. Myers, J. N. Weinstein, D. Botstein, and P. O. Brown (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24:227–235.

    Google Scholar 

  80. E. R. Andrechek, W. R. Hardy, P. M. Siegel, M. A. Rudnicki, R. D. Cardiff, and W. J. Muller (2000). Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 97:3444–3449.

    Google Scholar 

  81. M. A. Webster, J. N. Hutchinson, M. J. Rauh, S. K. Muthuswamy, M. Anton, C. G. Tortorice, R. D. Cardiff, F. L. Graham, J. A. Hassell, and W. J. Muller (1998). Requirement for both Shc and phosphatidylinositol 30 kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell. Biol. 18:2344–2359.

    Google Scholar 

  82. A. Stockinger, A. Eger, J. Wolf, H. Beug, and R. Foisner (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J. Cell Biol. 154:1185–1196.

    Google Scholar 

  83. O. Tetsu and F. McCormick (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426.

    Google Scholar 

  84. T. C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, P. J. Morin, B. Vogelstein, and K. W. Kinzler (1998). Identification ofc-MYCas a target of theAPCpathway. Science 281:1509–1512.

    Google Scholar 

  85. E. Labbe, A. Letamendia, and L. Attisano (2000). Association of Smads with lymphoid enhancer binding factor 1/T cellspecific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc. Natl. Acad. Sci. U.S.A. 97:8358–8363.

    Google Scholar 

  86. J. A. Schroeder, K. L. Troyer, and D. C. Lee (2000). Cooperative induction of mammary tumorigenesis by TGFalpha and Wnts. Oncogene 19:3193–3199.

    Google Scholar 

  87. J. A. Schroeder, M. C. Adriance, E. J. McConnell, M. C. Thompson, B. Pockaj, and S. J. Gendler (2002). ErbB-betacatenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J. Biol. Chem. 277:22692–22698.

    Google Scholar 

  88. Y. Fujita, G. Krause, M. Scheffner, D. Zechner, H. E. Leddy, J. Behrens, T. Sommer, and W. Birchmeier (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4:222–231.

    Google Scholar 

  89. B. Vecsey-Semjen, K. F. Becker, A. Sinski, E. Blennow, I. Vietor, K. Zatloukal, H. Beug, E. Wagner, and L. A. Huber (2002). Novel colon cancer cell lines leading to better understanding of the diversity of respective primary cancers. Oncogene 21:4646–4662.

    Google Scholar 

  90. R. Nusse, A. van Ooyen, D. Cox, Y. K. Fung, and H. Varmus (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131–136.

    Google Scholar 

  91. N. Harada, Y. Tamai, T. Ishikawa, B. Sauer, K. Takaku, M. Oshima, and M. M. Taketo (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18:5931–5942.

    Google Scholar 

  92. S. Y. Lin, W. Xia, J. C. Wang, K. Y. Kwong, B. Spohn, Y. Wen, R. G. Pestell, and M. C. Hung (2000). Beta-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U.S.A. 97:4262–4266.

    Google Scholar 

  93. T. C. Somervaille, D. C. Linch, and A. Khwaja (2001). Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 98:1374–1381.

    Google Scholar 

  94. B. H. Weeks, W. He, K. L. Olson, and X. J. Wang (2001). Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res. 61:7435–7443.

    Google Scholar 

  95. M. Oft, R. J. Akhurst, and A. Balmain (2002). Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat. Cell Biol. 4:487–494.

    Google Scholar 

  96. J. A. McEarchern, J. J. Kobie, V. Mack, R. S. Wu, L. Meade-Tollin, C. L. Arteaga, N. Dumont, D. Besselsen, E. Seftor, M. J. Hendrix, E. Katsanis, and E. T. Akporiaye (2001). Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int. J. Cancer 91:76–82.

    Google Scholar 

  97. Y. A. Yang, O. Dukhanina, B. Tang, M. Mamura, J. J. Letterio, J. MacGregor, S. C. Patel, S. Khozin, Z. Y. Liu, J. Green, M. R. Anver, G. Merlino, and L. M. Wakefield (2002). Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109:1607–1615.

    Google Scholar 

  98. S. Haraguchi, Y. Fukuda, Y. Sugisaki, and N. Yamanaka (1999). Pulmonary carcinosarcoma: Immunohistochemical and ultrastructural studies. Pathol. Int. 49:903–908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jechlinger, M., Grünert, S. & Beug, H. Mechanisms in Epithelial Plasticity and Metastasis: Insights from 3D Cultures and Expression Profiling. J Mammary Gland Biol Neoplasia 7, 415–432 (2002). https://doi.org/10.1023/A:1024090116451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024090116451

Navigation