Skip to main content
Log in

The Contribution of RNAs and Retroposition to Evolutionary Novelties

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Retroposition is an ancient process dating back to the conversion of RNA to DNA genomes. Nevertheless, it continues to make tremendous structural and functional contributions to extant genomes. This process and the endurance, or even renaissance, of an RNA world in many lineages sheds a new light on the Central Dogma of Molecular Biology. The question of why reverse transcriptase has survived billions of years without an apparent cellular function is discussed. Retroposition constitutes one of the pervasive conflicts, in this case between host genome on one hand and mobile genetic elements on the other, that fuel the evolutionary process. It is obvious that retroposition has, thus far, contributed numerous useful novelties to genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amrein, H. & R. Axel, 1997. Genes expressed in neurons of adult male Drosophila. Cell 88: 459-469.

    PubMed  Google Scholar 

  • Ariel, I., N. de Groot & A. Hochberg, 2000. Imprinted H19 gene expression in embryogenesis and human cancer: the oncofetal connection. Am. J. Med. Genet. 91: 46-50.

    PubMed  Google Scholar 

  • Avner, P. & E. Heard, 2001. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2: 59-67.

    PubMed  Google Scholar 

  • Bachellerie, J.-P., J. Cavaillé & A. Hüttenhofer, 2002. The expanding snoRNA world. Biochimie 84: 775-790.

    PubMed  Google Scholar 

  • Bailey, J.A., L. Carrel, A. Chakravarti & E.E. Eichler, 2000. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. P. Natl. Acad. Sci. USA 97: 6634-6639.

    Google Scholar 

  • Bailey, J.A., A.M. Yavor, L. Viggiano, D. Misceo, J.E. Horvath et al., 2002. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 70: 83-100.

    PubMed  Google Scholar 

  • Basile, V., A. Vicente, J.A. Martignetti, B.V. Skryabin, J. Brosius et al., 1998. Assignment of the human BC200 RNA gene (BCYRN1) to chromosome 2p16 by radiation hybrid mapping. Cytogenet. Cell. Genet. 82: 271-272.

    PubMed  Google Scholar 

  • Batzer, M.A. & P.L. Deininger, 2002. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3: 370-379.

    PubMed  Google Scholar 

  • Benzow, K.A. & M.D. Koob, 2002. The KLHL1-antisense transcript (KLHL1AS) is evolutionarily conserved. Mamm. Genome 13: 134-141.

    PubMed  Google Scholar 

  • Betran, E., W. Wang, L. Jin & M. Long, 2002. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol. 19: 654-663.

    PubMed  Google Scholar 

  • Blackburn, E.H., 1991. Telomeres. Trends Biochem. Sci. 16: 378-381.

    PubMed  Google Scholar 

  • Boumil, R.M. & J.T. Lee, 2001. Forty years of decoding the silence in X-chromosome inactivation. Hum. Mol. Genet. 10: 2225-2232.

    PubMed  Google Scholar 

  • Brenner, S., 1998. Refuge of spandrels. Curr. Biol. 8: R669.

    PubMed  Google Scholar 

  • Bridges, C., 1936. The Bar 'gene': a duplication. Science: 83: 210-211.

    Google Scholar 

  • Britten, R.J., 1996. DNA sequence insertion and evolutionary variation in gene regulation. P. Natl. Acad. Sci. USA 93: 9374-9377.

    Google Scholar 

  • Britten, R.J., 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177-182.

    PubMed  Google Scholar 

  • Brosius, J., 1991. Retroposons-seeds of evolution. Science 251: 753.

    PubMed  Google Scholar 

  • Brosius, J., 1999a. Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica 107: 209-238.

    PubMed  Google Scholar 

  • Brosius, J., 1999b. Many G-protein-coupled receptors are encoded by retrogenes. Trends Genet. 15: 304-305.

    PubMed  Google Scholar 

  • Brosius, J., 1999c. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115-134.

    PubMed  Google Scholar 

  • Brosius, J., 1999d. Transmutation of tRNA over time. Nat. Genet. 22: 8-9.

    PubMed  Google Scholar 

  • Brosius, J., 2003a Echoes from the past-are we still in an RNP world? (submitted).

  • Brosius, J., 2003b. Gene duplication and other evolutionary strategies: from the RNA world to the future. J. Struct. Funct. Genomics 3: 1-17.

    PubMed  Google Scholar 

  • Brosius, J. & S.J. Gould, 1992. On 'genomenclature': a comprehensive (and respectful) taxonomy for pseudogenes and other 'junk DNA'. P. Natl. Acad. Sci. USA 89: 10706-10710.

    Google Scholar 

  • Brosius, J. & S.J. Gould, 1993. Molecular constructivity. Nature 365: 102.

    Google Scholar 

  • Brosius, J. & H. Tiedge, 1995a. Neural BC1 RNA: dendritic localization and transport, pp. 289-330 in Localized RNAs, edited by H.D. Lipshitz & R.G. Landes, Austin, TX.

  • Brosius, J. & H. Tiedge, 1995b. Reverse transcriptase: mediator of genomic plasticity. Virus Genes 11: 163-179.

    PubMed  Google Scholar 

  • Brosius, J. & H. Tiedge, 2001. Dendritic BC1 RNA: intracellular transport and activity-dependent modulation, pp. 129-138 in Cell Polarity and Subcellular RNA Localization, edited by D. Richter. Springer Verlag, Berlin.

    Google Scholar 

  • Bussemakers, M.J., A. van Bokhoven, G.W. Verhaegh, F.P. Smit, H.F. Karthaus et al., 1999. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59: 5975-5979.

    PubMed  Google Scholar 

  • Casti, J.L. & A. Karlqvist (Editors), 1995. Cooperation and Conflict in General Evolutionary Processes. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Cavaillé, J., K. Buiting, M. Kiefmann, M. Lalande, C.I. Brannan et al., 2000. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. P. Natl. Acad. Sci. USA 97: 14311-14316.

    Google Scholar 

  • Cavaillé, J., P. Vitali, E. Basyuk, A. Hüttenhofer & J.P. Bachellerie, 2001. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J. Biol. Chem. 276: 26374-26383.

    PubMed  Google Scholar 

  • Cavaillé, J., H. Seitz, M. Paulsen, A.C. Ferguson-Smith & J.P. Bachellerie, 2002. Identification of tandemlyrepeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum. Mol. Genet. 11: 1527-1538.

    PubMed  Google Scholar 

  • Chen, W., W. Böcker, J. Brosius & H. Tiedge, 1997a. Expression of neural BC200 RNA in human tumours. J. Pathol. 183: 345-351.

    PubMed  Google Scholar 

  • Chen, W., J. Heierhorst, J. Brosius & H. Tiedge, 1997b. Expression of neural BC1 RNA: induction in murine tumours. Eur. J. Cancer. 33: 288-292.

    PubMed  Google Scholar 

  • Cheng, J.G., H. Tiedge & J. Brosius, 1996. Identification and characterization of BC1 RNP particles. DNA Cell Biol. 15: 549-559.

    PubMed  Google Scholar 

  • Cheng, J.G., H. Tiedge & J. Brosius, 1997. Expression of dendritic BC200 RNA, component of a 11.4S ribonucleoprotein particle, is conserved in humans and simians. Neurosci. Lett. 224: 206-210.

    PubMed  Google Scholar 

  • Comeron, J.M., 2001. What controls the length of noncoding DNA? Curr. Opin. Genet. Dev. 11: 652-659.

    PubMed  Google Scholar 

  • Copeland, N.G., N.A. Jenkins & S.J. O'Brien, 2002. Genomics. Mmu 16-comparative genomic highlights. Science 296: 1617-1618.

    PubMed  Google Scholar 

  • Costas, J., 2002. Characterization of the intragenomic spread of the human endogenous retrovirus family HERV-W. Mol. Biol. Evol. 19: 526-533.

    PubMed  Google Scholar 

  • Crick, F.H.C., 1958. On protein synthesis. Sym. Soc. Exp. Biol. 12: 138-183.

    Google Scholar 

  • Crick, F.H.C., 1970. Central Dogma of Molecular Biology. Nature 227: 561-563.

    PubMed  Google Scholar 

  • Davis, S. & J.C. Watson, 1996. In vitro activation of the interferoninduced, double-stranded RNA-dependent protein kinase PKR by RNA from the 3′ untranslated regions of human alphatropomyosin. P. Natl. Acad. Sci. USA 93: 508-513.

    Google Scholar 

  • Dawkins, R., 1976. The Selfish Gene. Oxford University Press, Oxford, UK.

    Google Scholar 

  • DeChiara, T.M. & J. Brosius, 1987. Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. P. Natl. Acad. Sci. USA 84: 2624-2628.

    Google Scholar 

  • Deininger, P.L., H. Tiedge, J. Kim & J. Brosius, 1996. Evolution, expression, and possible function of a master gene for amplification of an interspersed repeated DNA family in rodents. Prog. Nucleic Acid Re. (edited by W.E. Cohn & K. Moldave) 52: 67-88.

  • Deloukas, P., L.H. Matthews, J. Ashurst, J. Burton, J.G. Gilbert et al., 2001. The DNA sequence and comparative analysis of human chromosome 20. Nature 414: 865-871.

    PubMed  Google Scholar 

  • Devos, K.M., J.K.M. Brown & J.L. Bennetzen, 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075-1079.

    PubMed  Google Scholar 

  • Doolittle, W.F., 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601-603.

    PubMed  Google Scholar 

  • Eddy, S.R., 2001. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2: 919-929.

    PubMed  Google Scholar 

  • Eddy, S.R., 2002. Computational genomics of noncoding RNA genes. Cell 109: 137-140.

    PubMed  Google Scholar 

  • Eichler, E.E., 2001a. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17: 661-669.

    PubMed  Google Scholar 

  • Eichler, E.E., 2001b. Segmental duplications: what's missing, misassigned, and misassembled-and should we care? Genome Res. 11: 653-656.

    PubMed  Google Scholar 

  • Erdmann, V.A., M.Z. Barciszewska, M. Szymanski, A. Hochberg, N. de Groot et al., 2001. The non-coding RNAs as riboregulators. Nucleic Acids Res. 29: 189-193.

    PubMed  Google Scholar 

  • Fagerheim, T., P. Raeymaekers, F.E. Tonnessen, M. Pedersen, L. Tranebjaerg et al., 1999. A new gene (DYX3) for dyslexia is located on chromosome 2. J. Med. Genet. 36: 664-669.

    PubMed  Google Scholar 

  • Ferrigno, O., T. Virolle, Z. Djabari, J.P. Ortonne, R.J. White et al., 2001. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nat. Genet. 28: 77-81.

    PubMed  Google Scholar 

  • Filipowicz, W., 2000. Imprinted expression of small nucleolar RNAs in brain: time for RNomics. P. Natl. Acad. Sci. USA 97: 14035-14037.

    Google Scholar 

  • Flavell, A.J., 1995. Retroelements, reverse transcriptase and evolution. Comp. Biochem. Phys. B 110: 3-15.

    Google Scholar 

  • Gogolevskaya, I.K. & D.A. Kramerov, 2002. Evolutionary history of 4.5SI RNA and indication that it is functional. J. Mol. Evol. 54: 354-364.

    PubMed  Google Scholar 

  • Goodier, J.L., E.M. Ostertag & H.H. Kazazian, Jr., 2000. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9: 653-657.

    PubMed  Google Scholar 

  • Gould, S.J., 2002. The Structure of Evolutionary Theory. Belknap, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Gould, S.J., & E.S. Vrba, 1982. Exaptation-a missing term in the science of form. Paleobiology 8: 4-15.

    Google Scholar 

  • Herbert, A. & A. Rich, 1999. RNA processing and the evolution of eukaryotes. Nat. Genet. 21: 265-269.

    PubMed  Google Scholar 

  • Horike, S., K. Mitsuya, M. Meguro, N. Kotobuki, A. Kashiwagi et al., 2000. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 9: 2075-2083.

    PubMed  Google Scholar 

  • Hurst, L.D. & G.T. McVean, 1998. Do we understand the evolution of genomic imprinting? Curr. Opin. Genet. Dev. 8: 701-708.

    PubMed  Google Scholar 

  • Hurst, L.D. & N.G. Smith, 1999. Molecular evolutionary evidence that H19 mRNA is functional. Trends Genet. 15: 134-135.

    PubMed  Google Scholar 

  • Hurst, L.D., A. Atlan & B.O. Bengtsson, 1996. Genetic conflicts. Q. Rev. Biol. 71: 317-364.

    PubMed  Google Scholar 

  • Hüttenhofer, A. & J. Brosius, 2002. Experimental RNomics, pp. 217-240. In Functional Genomics, edited by M. Galperin & E.V. Koonin. Horizon Scientific Press, New York.

    Google Scholar 

  • Hüttenhofer, A., M. Kiefmann, S. Meier-Ewert, J. O'Brien, H. Lehrach et al., 2001. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J. 20: 2943-2953.

    PubMed  Google Scholar 

  • Inouye, S. & M. Inouye, 1995. Structure, function, and evolution of bacterial reverse transcriptase. Virus Genes 11: 81-94.

    PubMed  Google Scholar 

  • Iwasa, Y., 1998. The conflict theory of genomic imprinting: how much can be explained? Curr. Top. Dev. Biol. 40: 255-293.

    PubMed  Google Scholar 

  • Jamain, S., M. Girondot, P. Leroy, M. Clergue, H. Quach et al., 2001. Transduction of the human gene FAM8A1 by endogenous retrovirus during primate evolution. Genomics 78: 38-45.

    PubMed  Google Scholar 

  • Jeffares, D.C., A.M. Poole & D. Penny, 1998. Relics from the RNA world. J. Mol. Evol. 46: 18-36.

    PubMed  Google Scholar 

  • Johnson, M.E., L. Viggiano, J.A. Bailey, M. Abdul-Rauf, G. Goodwin et al., 2001. Positive selection of a gene family during the emergence of humans and African apes. Nature 413: 514-519.

    PubMed  Google Scholar 

  • Jordan, I.K., L.V. Matyunina & J.F. McDonald, 1999. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. P. Natl. Acad. Sci. USA 96: 12621-12625.

    Google Scholar 

  • Jurka, J., 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struc. Biol. 8: 333-337.

    Google Scholar 

  • Kim, J., J.A. Martignetti, M.R. Shen, J. Brosius & P. Deininger, 1994. Rodent BC1 RNA gene as a master gene for ID element amplification. P. Natl. Acad. Sci. USA 91: 3607-3611.

    Google Scholar 

  • Kobayashi, S., S. Goto & K. Anzai, 1991. Brain-specific small RNA transcript of the identifier sequences is present as a 10S ribonucleoprotein particle. J. Biol. Chem. 266: 4726-4730.

    PubMed  Google Scholar 

  • Koller, M. & E.E. Strehler, 1988. Characterization of an intronless human calmodulin-like pseudogene. FEBS Lett. 239: 121-128.

    PubMed  Google Scholar 

  • Kordis, D. & F. Gubensek, 1998. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. P. Natl. Acad. Sci. USA 95: 10704-10709.

    Google Scholar 

  • Kremerskothen, J., M. Nettermann, A. op de Bekke, M. Bachmann & J. Brosius, 1998a. Identification of human autoantigen La/SS-B as BC1/BC200 RNA-binding protein. DNA Cell Biol. 17: 751-759.

    PubMed  Google Scholar 

  • Kremerskothen, J., D. Zopf, P. Walter, J.G. Cheng, M. Nettermann et al., 1998b. Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neurosci Lett. 245: 123-126.

    PubMed  Google Scholar 

  • Kurdyukov, S.G., Y.B. Lebedev, Artamonova, II, T.N. Gorodentseva, A.V. Batrak et al., 2001. Full-sized HERVK (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history. Gene 273: 51-61.

    PubMed  Google Scholar 

  • Kurychev, V.Y., B.V. Skryabin, J. Kremerskothen, J. Jurka & J. Brosius, 2001. Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J. Mol. Biol. 309: 1049-1066.

    PubMed  Google Scholar 

  • Lagos-Quintana, M., R. Rauhut, W. Lendeckel & T. Tuschl, 2001. Identification of novel genes coding for small expressed RNAs. Science 294: 853-858.

    PubMed  Google Scholar 

  • Lagos-Quintana, M., R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel et al., 2002. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12: 735-739.

    PubMed  Google Scholar 

  • Lai, E.C., 2002. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30: 363-364.

    PubMed  Google Scholar 

  • Lampson, B.C., S. Inouye & M. Inouye, 1991. msDNA of bacteria. Prog. Nucleic Acid Re. 40: 1-24.

    Google Scholar 

  • Lau, N.C., L.P. Lim, E.G. Weinstein & D.P. Bartel, 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858-862.

    PubMed  Google Scholar 

  • Lee, R.C. & V. Ambros, 2001. An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862-864.

    PubMed  Google Scholar 

  • Lin, Y., J. Brosius & H. Tiedge, 2001. Neuronal BC1 RNA: coexpression with growth-associated protein-43 messenger RNA. Neuroscience 103: 465-479.

    PubMed  Google Scholar 

  • Lipshitz, H.D., D.A. Peattie & D.S. Hogness, 1987. Novel transcripts from the ultrabithorax domain of the bithorax complex. Genes Dev. 1: 307-322.

    PubMed  Google Scholar 

  • Liu, A.Y., B.S. Torchia, B.R. Migeon & R.F. Siliciano, 1997. The human NTT gene: identification of a novel 17-kb noncoding nuclear RNA expressed in activated CD4+ T cells. Genomics 39: 171-184.

    PubMed  Google Scholar 

  • Lottin, S., A.S. Vercoutter-Edouart, E. Adriaenssens, X. Czeszak, J. Lemoine et al., 2002. Thioredoxin post-transcriptional regulation by H19 provides a new function to mRNA-like non-coding RNA. Oncogene 21: 1625-1631.

    PubMed  Google Scholar 

  • Lyle, R., D. Watanabe, D. te Vruchte, W. Lerchner, O.W. Smrzka et al., 2000. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat. Genet. 25: 19-21.

    PubMed  Google Scholar 

  • Lyon, M.F., 1998. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80: 133-137.

    PubMed  Google Scholar 

  • Lyon, M.F., 2000. LINE-1 elements and X chromosome inactivation: a function for 'junk' DNA? P. Natl. Acad. Sci. USA 97: 6248-6249.

    Google Scholar 

  • Makalowski, W., 2000. Genomic scrap yard: how genomes utilize all that junk. Gene 259: 61-67.

    PubMed  Google Scholar 

  • Malik, K., A. Salpekar, A. Hancock, K. Moorwood, S. Jackson et al., 2000. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor. Cancer Res. 60: 2356-2360.

    PubMed  Google Scholar 

  • Martignetti, J.A. & J. Brosius, 1993a. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. P. Natl. Acad. Sci. USA 90: 11563-11567.

    Google Scholar 

  • Martignetti, J.A. & J. Brosius, 1993b. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. P. Natl. Acad. Sci. USA 90: 9698-9702.

    Google Scholar 

  • Martignetti, J.A. & J. Brosius, 1995. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript. Mol. Cell. Biol. 15: 1642-1650.

    PubMed  Google Scholar 

  • Medstrand, P., J.R. Landry & D.L. Mager, 2001. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276: 1896-1903.

    PubMed  Google Scholar 

  • Meller, V.H. & B.P. Rattner, 2002. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21: 1084-1091.

    PubMed  Google Scholar 

  • Meller, V.H., K.H.Wu, G. Roman, M.I. Kuroda & R.L. Davis, 1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88: 445-457.

    PubMed  Google Scholar 

  • Michod, R.E., 1996. Cooperation and conflict in the evolution of individuality. II. Conflict mediation. P. Roy. Soc. Lond. B Bio. 263: 813-822.

    Google Scholar 

  • Michod, R.E. & D. Roze, 2001. Cooperation and conflict in the evolution of multicellularity. Heredity 86: 1-7.

    PubMed  Google Scholar 

  • Millar, J.K., J.C. Wilson-Annan, S. Anderson, S. Christie, M.S. Taylor et al., 2000. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9: 1415-1423.

    PubMed  Google Scholar 

  • Mitsuya, K., M. Meguro, M.P. Lee, M. Katoh, T.C. Schulz et al., 1999. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8: 1209-1217.

    PubMed  Google Scholar 

  • Moore, H., K. Dvorakova, N. Jenkins & W. Breed, 2002. Exceptional sperm cooperation in the wood mouse. Nature 418: 174-177.

    PubMed  Google Scholar 

  • Moran, J.V., R.J. DeBerardinis & H.H. Kazazian, Jr., 1999. Exon shuffling by L1 retrotransposition. Science 283: 1530-1534.

    PubMed  Google Scholar 

  • Morrish, T.A., N. Gilbert, J.S. Myers, B.J. Vincent, T.D. Stamato et al., 2002. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31: 159-165.

    PubMed  Google Scholar 

  • Mouches, C., N. Bensaadi & J.C. Salvado, 1992. Characterization of a LINE retroposon dispersed in the genome of three non-sibling Aedes mosquito species. Gene 120: 183-190.

    PubMed  Google Scholar 

  • Muddashetty, R.S., T. Khanam, A. Kondrashov, M. Bundman, A. Iacoangeli e al., 2002. Poly(A) binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J. Mol. Biol. 321: 433-445.

    PubMed  Google Scholar 

  • Muller, H.J., A.A. Prokofyeva-Belgovskaya & K.V. Kossikov, 1936. Unequal crossing-over in the Bar mutant as a result of duplication of a minute chromosome section. C. R. (Doklady) Acad. Sci. URSS 1: 87-88.

    Google Scholar 

  • Mural, R.J., M.D. Adams, E.W. Myers, H.O. Smith, G.L. Miklos et al., 2002. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296: 1661-1671.

    PubMed  Google Scholar 

  • Muslimov, I.A., G. Banker, J. Brosius & H. Tiedge, 1998. Activitydependent regulation of dendritic BC1 RNA in hippocampal neurons in culture. J. Cell. Biol. 141: 1601-1611.

    PubMed  Google Scholar 

  • Muslimov, I.A., Y. Lin, M. Heller, J. Brosius, Z. Zakeri et al., 2002. A small RNA in testis and brain: implications for male germ cell development. J. Cell. Sci. 115: 1243-1250.

    PubMed  Google Scholar 

  • Nekrutenko, A. & W.H. Li, 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17: 619-621.

    PubMed  Google Scholar 

  • Nemes, J.P., K.A. Benzow, M.L. Moseley, L.P. Ranum & M.D. Koob, 2000. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum. Mol. Genet. 9: 1543-1551.

    PubMed  Google Scholar 

  • Ninomiya, S., M. Isomura, K. Narahara, Y. Seino & Y. Nakamura, 1996. Isolation of a testis-specific cDNA on chromosome 17q from a region adjacent to the breakpoint of t(12;17) observed in a patient with acampomelic campomelic dysplasia and sex reversal. Hum. Mol. Genet. 5: 69-72.

    PubMed  Google Scholar 

  • Noyce, L. & A.A. Piper, 1994. Isolation of a potentially functional HPRT processed pseudogene from the hill kangaroo Macropus robustus. Gene 150: 361-365.

    PubMed  Google Scholar 

  • Noyce, L., J. Conaty & A.A. Piper, 1997. Identification of a novel tissue-specific processed HPRT gene and comparison with X-linked gene transcription in the Australian marsupial Macropus robustus. Gene 186: 87-95.

    PubMed  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, New York.

    Google Scholar 

  • Okada, N., 1991. SINEs. Curr. Opin. Genet. Dev. 1: 498-504.

    PubMed  Google Scholar 

  • Okada, N., M. Hamada, I. Ogiwara, K. Ohshima, 1997. SINEs and LINEs share common 3′ sequences: a review. Gene 205: 229-243.

    PubMed  Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604-607.

    PubMed  Google Scholar 

  • Ostertag, E.M. & H.H. Kazazian, Jr., 2001. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35: 501-538.

    PubMed  Google Scholar 

  • Paces, J., A. Pavlicek & V. Paces, 2002. HERVd: database of human endogenous retroviruses. Nucleic Acids Res. 30: 205-206.

    PubMed  Google Scholar 

  • Parker, G.A. & L. Partridge, 1998. Sexual conflict and speciation. Philos. T. Roy. Soc. B 353: 261-274.

    Google Scholar 

  • Partridge, L. & L.D. Hurst, 1998. Sex and conflict. Science 281: 2003-2008.

    PubMed  Google Scholar 

  • Pasquinelli, A.E., 2002. MicroRNAs: deviants no longer. Trends Genet. 18: 171-173.

    PubMed  Google Scholar 

  • Patthy, L., 1991 Exons-original building blocks of proteins? Bioessays 13: 187-192.

    PubMed  Google Scholar 

  • Pelczar, P. & W. Filipowicz, 1998. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol. Cell. Biol. 18: 4509-4518.

    PubMed  Google Scholar 

  • Petrov, D.A., 2001. Evolution of genome size: new approaches to an old problem. Trends Genet. 17: 23-28.

    PubMed  Google Scholar 

  • Petrov, D.A., T.A. Sangster, J.S. Johnston, D.L. Hartl & K.L. Shaw, 2000. Evidence for DNA loss as a determinant of genome size. Science 287: 1060-1062.

    PubMed  Google Scholar 

  • Poole, A.M., D.C. Jeffares & D. Penny, 1998. The path from the RNA world. J. Mol. Evol. 46: 1-17.

    PubMed  Google Scholar 

  • Quentin, Y., 1994. Emergence of master sequences in families of retroposons derived from 7sl RNA. Genetica 93: 203-215.

    PubMed  Google Scholar 

  • Rastinejad, F. & H.M. Blau, 1993. Genetic complementation reveals a novel regulatory role for 3′ untranslated regions in growth and differentiation. Cell 72: 903-917.

    PubMed  Google Scholar 

  • Rastinejad, F., M.J. Conboy, T.A. Rando & H.M. Blau, 1993. Tumor suppression by RNA from the 3′ untranslated region of alpha-tropomyosin. Cell 75: 1107-1117.

    PubMed  Google Scholar 

  • Renaud, F. & T. de Meeus, 1991. A simple model of host-parasite evolutionary relationships. Parasitism: compromise or conflict? J. Theor. Biol. 152: 319-327.

    PubMed  Google Scholar 

  • Rozhdestvensky, T.S., A.M. Kopylov, J. Brosius & A. Hüttenhofer, 2001. Neuronal BC1 RNA structure: evolutionary conversion of a tRNA-Ala domain into an extended stem-loop structure. RNA 7: 722-730.

    PubMed  Google Scholar 

  • Runte, M., A. Huttenhofer, S. Gross, M. Kiefmann, B. Horsthemke et al., 2001. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10: 2687-2700.

    PubMed  Google Scholar 

  • Samonte, R.V. & E.E. Eichler, 2002. Segmental duplications and the evolution of the primate genome. Nat. Rev. Genet. 3: 65-72.

    PubMed  Google Scholar 

  • Sawata, M., D. Yoshino, H. Takeuchi, A. Kamikouchi, K. Ohashi et al., 2002. Identification and punctuate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain. RNA 8: 772-785.

    PubMed  Google Scholar 

  • Schön, U., W. Seifarth, C. Baust, C. Hohenadl, V. Erfle et al., 2001. Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279: 280-291.

    PubMed  Google Scholar 

  • Shippen-Lentz, D. & E.H. Blackburn, 1990. Functional evidence for an RNA template in telomerase. Science 247: 546-552.

    PubMed  Google Scholar 

  • Skryabin, B.V., J. Kremerskothen, D. Vassilacopoulou, T.R. Disotell, V.V. Kapitonov et al., 1998. The BC200 RNA gene and its neural expression are conserved in Anthropoidea (Primates). J. Mol. Evol. 47: 677-685.

    PubMed  Google Scholar 

  • Skryabin, B.V., V. Sukonina, U. Jordan, N. Sachser & L. Lewejohann, 2003. Role of a small non-messenger RNA in behavior: targeted deletion of neuronal BC1 RNA gene in mice. (submitted).

  • Sleutels, F., R. Zwart & D.P. Barlow, 2002. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415: 810-813.

    PubMed  Google Scholar 

  • Smit, A.F. & A.D. Riggs, 1995. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23: 98-102.

    PubMed  Google Scholar 

  • Sober, E. & D.S. Wilson, 1998. Unto Others. The Evolution and Psychology of Unselfish Behavior. Harvard University Press, Cambridge.

    Google Scholar 

  • Sorek, R., G. Ast & D. Graur, 2002. Alu-containing exons are alternatively spliced. Genome Res. 12: 1060-1067.

    PubMed  Google Scholar 

  • Storz, U., 2002. Counting all genes: how many other RNAs exist and what do they do? Science 296: 1260-1263.

    PubMed  Google Scholar 

  • Sturtevant, A.H., 1925. The effects of unequal crossing over at the Bar locus in Drosophila. Genetics 10: 117-147.

    Google Scholar 

  • Szathmáry, E. & J.M. Smith, 1995. The major evolutionary transitions. Nature 374: 227-232.

    Google Scholar 

  • Takeda, K., H. Ichijo, M. Fujii, Y. Mochida, M. Saitoh et al., 1998. Identification of a novel bone morphogenetic protein-responsive gene that may function as a noncoding RNA. J. Biol. Chem. 273: 17079-17085.

    PubMed  Google Scholar 

  • Taylor, B.A., A. Navin, B.V. Skryabin & J. Brosius, 1997. Localization of the mouse gene (Bc1) encoding neural BC1 RNA near the fibroblast growth factor 3 locus (Fgf3) on distal chromosome 7. Genomics 44: 153-154.

    PubMed  Google Scholar 

  • Temin, H.M., 1989. Reverse transcriptases. Retrons in bacteria. Nature 339: 254-255.

    PubMed  Google Scholar 

  • Thieffry, D. & S. Sarkar, 1998. Forty years under the central dogma. Trends Biochem. Sci. 23: 312-316.

    PubMed  Google Scholar 

  • Tiedge, H., W. Chen & J. Brosius, 1993. Primary structure, neuralspecific expression, and dendritic location of human BC200 RNA. J. Neurosci. 13: 2382-2390.

    PubMed  Google Scholar 

  • Tiedge, H., U.C. Dräger & J. Brosius, 1992. Murine BC1 RNA in dendritic fields of the retinal inner plexiform layer. Neurosci. Lett. 141: 136-138.

    PubMed  Google Scholar 

  • Tiedge, H., R.T. Fremeau, P.H. Weinstock, O. Arancio & J. Brosius, 1991. Dendritic location of neural BC1 RNA. P. Natl. Acad. Sci. USA 88: 2093-2097.

    Google Scholar 

  • Tycowski, K.T. & J.A. Steitz, 2001. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur. J. Cell. Biol. 80: 119-125.

    PubMed  Google Scholar 

  • Tycowski, K.T., M.D. Shu & J.A. Steitz, 1996. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379: 464-466.

    Google Scholar 

  • Ullu, E. & C. Tschudi, 1984. Alu sequences are processed 7SL RNA genes. Nature 312: 171-172.

    PubMed  Google Scholar 

  • Velleca, M.A., M.C. Wallace & J.P. Merlie, 1994. A novel synapse-associated noncoding RNA. Mol. Cell. Biol. 14: 7095-7104.

    PubMed  Google Scholar 

  • Vinogradova, T., L. Leppik, E. Kalinina, P. Zhulidov, K.H. Grzeschik et al., 2002. Selective differential display of RNAs containing interspersed repeats: analysis of changes in the transcription of HERV-K LTRs in germ cell tumors. Mol. Genet. Genomics 266: 796-805.

    PubMed  Google Scholar 

  • Volff, J.N., C. Korting & M. Schartl, 2000. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol. Biol. Evol. 17: 1673-1684.

    PubMed  Google Scholar 

  • Wang, W., F.G. Brunet, E. Nevo & M. Long, 2002. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. P. Natl. Acad. Sci. USA 99: 4448-4453.

    Google Scholar 

  • Ware, T.L., H. Wang & E.H. Blackburn, 2000. Three telomerases with completely non-telomeric template replacements are catalytically active. EMBO J. 19: 3119-3131.

    PubMed  Google Scholar 

  • Watanabe, Y. & M. Yamamoto, 1994. S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78: 487-498.

    Article  PubMed  Google Scholar 

  • Weiner, A.M., 2002. SINEs and LINEs: the art of biting the hand that feeds you. Curr. Opin. Cell. Biol. 14: 343-350.

    PubMed  Google Scholar 

  • Weiner, A.M., P.L. Deininger & A. Efstratiadis, 1986. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55: 631-661.

    PubMed  Google Scholar 

  • West, N.C., A.M. Roy-Engel, H. Imataka, N. Sonenberg & P.L. Deininger, 2002. Shared protein components of SINE RNPs. J. Mol. Biol. 321: 423-432.

    PubMed  Google Scholar 

  • Williams, G.C., 1997. The Pony Fish's Glow. And Other Clues to Plan and Purpose in Nature. Basic Books, New York, N.Y.

    Google Scholar 

  • Woese, C.R., 1967. The Genetic Code: The Molecular Basis for Genetic Expression. Harper and Row, New York.

    Google Scholar 

  • Woese, C.R., 2002. On the evolution of cells. P. Natl. Acad. Sci. USA 99: 8742-8747.

    Google Scholar 

  • Yamamoto, M., 1996. Regulation of meiosis in fission yeast. Cell Struct. Funct. 21: 431-436.

    PubMed  Google Scholar 

  • Yamashita, A., Y. Watanabe, N. Nukina & M. Yamamoto, 1998. RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 95: 115-123.

    PubMed  Google Scholar 

  • Yaswen, P., A. Smoll, J. Hosoda, G. Parry & M.R. Stampfer, 1992. Protein product of a human intronless calmodulinlike gene shows tissue-specific expression and reduced abundance in transformed cells. Cell Growth Differ. 3: 335-345.

    PubMed  Google Scholar 

  • Zupunski, V., F. Gubensek & D. Kordis, 2001. Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons. Mol. Biol. Evol. 18: 1849-1863.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosius, J. The Contribution of RNAs and Retroposition to Evolutionary Novelties. Genetica 118, 99–115 (2003). https://doi.org/10.1023/A:1024141306559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024141306559

Navigation