Skip to main content
Log in

Functional Divergence in Protein (Family) Sequence Evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

As widely used today to infer ‘function’, the homology search is based on the neutral theory that sites of greatest functional significance are under the strongest selective constraints as well as lowest evolutionary rates, and vice versa. Therefore, site-specific rate changes (or altered selective constraints) are related to functional divergence during protein (family) evolution. In this paper, we review our recent work about this issue. We show a great deal of functional information can be obtained from the evolutionary perspective, which can in turn be used to facilitate high throughput functional assays. The emergence of evolutionary functional genomics is also indicated. The related software DIVERGE can be obtained form http://xgu1.zool.iastate.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Casari, G., C. Sander & A. Valencia, 1995. A method to predict functional residues in proteins. Nat. Struct. Biol. 2: 171-178.

    PubMed  Google Scholar 

  • Clark, A.G., 1994. Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA 91: 2950-2954.

    PubMed  Google Scholar 

  • Dermitzakis, E.T. & A.G. Clark, 2001. Differential selection after duplication inmammalian developmental genes. Mol. Biol. Evol. 18: 557-562.

    PubMed  Google Scholar 

  • Fitch, W.M. & E. Markowitz, 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4: 579-593.

    PubMed  Google Scholar 

  • Force, A., M. Lynch, F.B. Pickett, A. Amores, Y.L. Yan & J. Postlethwait, 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.

    PubMed  Google Scholar 

  • Fryxell, K.J., 1996. The coevolution of gene family trees. Trends Genet. 12: 364-369.

    PubMed  Google Scholar 

  • Gaucher, E.A., M.M. Miyamoto & S.A. Benner, 2001. Functionstructure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. PNAS 98: 548-552.

    PubMed  Google Scholar 

  • Golding, G.B. & A.M. Dean, 1998. The structural basis of molecular adaptation. Mol. Biol. Evol. 15: 355-369.

    PubMed  Google Scholar 

  • Gu, X., 1999. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. 16: 1664-1674.

    PubMed  Google Scholar 

  • Gu, X., 2001. Maximum-likelihood approach for gene family evolution under functional divergence. Mol. Biol. Evol. 18: 453-464.

    PubMed  Google Scholar 

  • Gu, X. & K. Vander Velden, 2002. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics (in press).

  • Gu, J., Y. Wang & X. Gu, 2002. Evolutionary analysis for functional divergence of Jak protein kinase domains and tissue-specific genes. J. Mol. Evol. (in press).

  • Hughes, A.L., 1994. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci. 256: 119-124.

    PubMed  Google Scholar 

  • Jordan, K., G.R. Bishop & D.S. Gonzalez, 2001. Sequence and structural aspects of functional diversification in class Imannosidase evolution. Bioinformatics 17: 965-976.

    PubMed  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Knudsen, B. & M. Miyamoto, 2001. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. PNAS 98: 14512-14517.

    PubMed  Google Scholar 

  • Landgraf, R., D. Fischer & D. Eisenberg, 1999. Analysis of heregulin symmetry by weighted evolutionary tracing. Protein Eng. 12: 943-951.

    PubMed  Google Scholar 

  • Li, W.H., 1983. pp. 14-37 in Evolution of Genes and Proteins, M. Nei & R.K. Keohn. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lichtarge, O., H.R. Bourne & F.E. Cohen, 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257: 342-358.

    Article  PubMed  Google Scholar 

  • Livingstone, C.D. & G.J. Barton, 1996. Identification of functional residues and secondary structure from protein multiple sequence alignment. Meth. Enzymol. 266: 497-512.

    PubMed  Google Scholar 

  • Lockhart, P.J., M.A. Steel, A.C. Barbrook, D.H. Huson, M.A. Charleston & C.J. Howe, 1998. A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. Mol. Biol. Evol. 15: 1183-1188.

    PubMed  Google Scholar 

  • Lopez, P., P. Forterre & H. Philippe, 1999. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49: 496-508.

    PubMed  Google Scholar 

  • Miyamoto, M.M. & W.M. Fitch, 1995. Testing the covarion hypothesis of molecular evolution. Mol. Biol. Evol. 12: 503-513.

    PubMed  Google Scholar 

  • Naylor, G.J. & M. Gerstein, 2000. Measuring shifts in function and evolutionary opportunity using variability profiles: a case study of the globins. J. Mol. Evol. 51: 223-233.

    PubMed  Google Scholar 

  • Nei, M., X. Gu & T. Sitnikova, 1997. Evolution by the birth-anddeath process in multigene families of the vertebrate immune system. PNAS 94: 7799-7806.

    PubMed  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin.

    Google Scholar 

  • Pollock, D., W.R. Taylor & N. Goldman, 1999. Coevolving protein residues: maximum likelihood identification and relationship to structure. J. Mol. Biol. 287: 187-198.

    PubMed  Google Scholar 

  • Rotonda, J., D.W. Nicholson, K.M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E.P. Peterson, D.M. Rasper, R. Ruel, J.P. Vaillancourt, N.A. Thornberry & J.W. Becker, 1996. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 7: 619-625.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    PubMed  Google Scholar 

  • Suzuki, Y. & T. Gojobori, 1999. A method for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 16: 1315-1328.

    PubMed  Google Scholar 

  • Tsunoyama, K. & T. Gojobori, 1998. Evolution of nicotinic acetylcholine receptor subunits. Mol. Biol. Evol. 15: 518-527.

    PubMed  Google Scholar 

  • Wang, Y. & X. Gu, 2000. Evolutionary patterns of gene families generated in the early stage of vertebrates. J. Mol. Evol. 51: 88-96.

    PubMed  Google Scholar 

  • Wang, Y. & X. Gu, 2001. Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 158: 1311-1320.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X. Functional Divergence in Protein (Family) Sequence Evolution. Genetica 118, 133–141 (2003). https://doi.org/10.1023/A:1024197424306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024197424306

Navigation