Skip to main content
Log in

Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Yield and its components (stem-, leaf- and top-yield) were analyzed in a population derived from the cross between F1.1 andF1.7 entries of Miscanthus sinensisAnders. Both lines are offspring of the cross between MS-90-2 and MS-88-110. The aim of this work was to identify QTLs for yield and its components suitable to develop a Marker Aided Selection (MAS) program in M. sinensis.QTL analyses were performed using a previous linkage map based on RAPD markers which was constructed using a new mapping strategy named ‘offspring cross’ that is useful for mapping in forest and fruit trees. The MapQTL 4.0 package was used to perform QTL analyses. Twenty potential QTLs were detected over two years of analyses. Out of these, 6 were associated with yield,8 with stem-yield, 2 with leaf-yield and 4with top-yield. These results constitute an initial step to develop a MAS program for biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adati, S. & I. Shiotani, 1962. The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agr Mie Univ 25: 1-24.

    Google Scholar 

  • Asíns, M.J., P.F. Maestre, J.E. García, F. Dicenta & E.A. Carbonell, 1994. Genotype × environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor Appl Genet 89: 358-364.

    Article  Google Scholar 

  • Atienza, S.G., Z. Satovic, K.K. Petersen, O. Dolstra & A. Martín, 2002. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105: 946-952.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.

    PubMed  CAS  Google Scholar 

  • Clifton-Brown, J.C. & I. Lewandowski, 2002. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16: 97-110.

    Article  Google Scholar 

  • Conneally, P.M., J.H. Edwards, K.K. Kidd, J.-M. Lalouel, N. Morton, J. Ott & R. White, 1985. Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40: 356-359.

    Article  PubMed  CAS  Google Scholar 

  • Conner, P.J., S.K. Brown & N.F. Weeden, 1998. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96: 1027-1035.

    Article  CAS  Google Scholar 

  • Deuter, M. & J. Abraham, 1998. Genetic resources of Miscanthus and their use in breeding Biomass for energy and industry, Proceedings of the International conference Würzburg, 8-11 June. Würzburg, pp. 775-777.

  • García, M.R., M.J. Asíns & E.A. Carbonell, 2000. QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101: 487-493.

    Article  Google Scholar 

  • Greef, J.M. & M. Deuter, 1993. Syntaxonomy of Miscanthus × giganteus GREEF et DEU. Angew Bot 67: 87-90.

    Google Scholar 

  • Jansen, R.C., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.

    PubMed  CAS  Google Scholar 

  • Jansen, R.C., 1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138: 871-881.

    PubMed  CAS  Google Scholar 

  • Jansen, R.C. & P. Stam, 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.

    PubMed  CAS  Google Scholar 

  • Jorgensen, U., 1997. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy 12: 155-169.

    Article  CAS  Google Scholar 

  • Kaya, Z., M.M. Sewell & D.B. Neale, 1999. Identification of quantitative trait loci influencing annual height-and diameterincrement growht in loblolly pine (Pinus taeda L.). Theor Appl Genet 98: 586-592.

    Article  CAS  Google Scholar 

  • Kearsey, M.J. & A.G.L. Farquhar, 1998. QTL analysis in plants; where are we now? Heridity 80: 137-142.

    Article  Google Scholar 

  • Knott, S.A. & C.S. Haley, 1992. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132: 1211-1222.

    PubMed  CAS  Google Scholar 

  • Knott, S.A., D.B. Neale, M.M. Sewell & C.S. Haley, 1997. Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94: 810-820.

    Article  Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.

    PubMed  CAS  Google Scholar 

  • Lehmann, E.L., 1975. Nonparametrics, McGraw-Hill, New York.

    Google Scholar 

  • Lerceteau, E., A.E. Szmidt & B. Andersson, 2001. Detection of quantitative trait loci in Pinus sylvestris L. across years. Euphytica 121: 117-122.

    Article  Google Scholar 

  • Lewandowski, I. & A. Kicherer, 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron 6: 163-177.

    Article  Google Scholar 

  • Lewandowski, I., J.C. Clifton-Brown, J.M.O. Scurlock & W. Huisman, 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19: 209-227.

    Article  CAS  Google Scholar 

  • Linde-Laursen, I., 1993. Cytogenetic analysis of Miscanthus 'Giganteus' an interspecific hybrid. Hereditas 119: 297-300.

    Article  Google Scholar 

  • Maliepaard, C. & J.W. Van Ooijen, 1994. QTL mapping in a fullsib family of an outcrossing species. In: J.W. Van Ooijen and J. Jansen, J. (Eds.), Biometrics in Plant Breeding: Applications of Molecular Markers, pp. 140-146. Proc. of the ninth meeting of the EUCARPIA section biometrics in plant breeding, 6-8 July 1994, Wageningen, The Netherlands.

  • Marques, C.M., J. Vasquez-Kool, V.J. Carocha, J.G. Ferreira, D.M. O'Malley, B-H Liu & R. Sederoff, 1999. Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99: 936-946.

    Article  Google Scholar 

  • Nair, S., J.S. Bentur, U. Prasada Rao & M. Mohan, 1995. DNA markers tightly linked to a gall midge resistente gene (Gm2) are potentially useful for marker-aided selection in rice breeding. Theor Appl Genet 91: 68-73.

    CAS  Google Scholar 

  • Nielsen, P.N., 1990. Elefantengrassanbau in Dänemark-Praktikerbericht. Pflug und Spaten 3: 1-4.

    CAS  Google Scholar 

  • Paran, I. & R.W. Michelmore, 1993. Development f reliable PCR-based markers linked to downey mildew resistance genes in lettuce. Theor Appl Genet 85: 985-993.

    Article  CAS  Google Scholar 

  • Sewell, M.M., D.L. Bassoni, R.A. Megraw, N.C. Wheeler & D.B. Neale, 2000. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101: 1273-1281.

    Article  CAS  Google Scholar 

  • Sewell, M.M., M.F. Davis, G.A. Tuskan, N.C. Wheeler, C.C. Elam, D.L. Bassoni & D.B. Neale, 2002. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104: 214-222.

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen, J.W., 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84: 803-811.

    CAS  Google Scholar 

  • Van Ooijen, J.W., M.P. Boer, R.C. Jansen & C. Maliepaard, 2000. MapQTLTM version 4.0: software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, the Netherlands.

    Google Scholar 

  • Verhaegen, D., C. & J.-M. Plomion, 1996. Genetic mapping in Eucalyptus urophylla and E. grandis using RAPD markers. Genome 39: 1051-1061.

    CAS  PubMed  Google Scholar 

  • Williams, M.N.V., N. Pande, S. Nair, M. Mohan & J. Bennett, 1991. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet 82: 489-498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atienza, S., Satovic, Z., Petersen, K. et al. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica 132, 353–361 (2003). https://doi.org/10.1023/A:1025041926259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025041926259

Navigation