Skip to main content
Log in

The Nuclear Factor I (NFI) Gene Family in Mammary Gland Development and Function

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary gland development and function require the coordinated spatial and temporal expression of a large fraction of the mammalian genome. A number of site-specific transcription factors are essential to achieve the appropriate growth, branching, expansion, and involution of the mammary gland throughout early postnatal development and the lactation cycle. One family of transcription factors proposed to play a major role in the mammary gland is encoded by the Nuclear Factor I (NFI) genes. The NFI gene family is found only in multicellular animals, with single genes being present in flies and worms and four genes in vertebrates. While the NFI family expanded and diversified prior to the evolution of the mammary gland, it is clear that several mammary-gland specific genes are regulated by NFI proteins. Here we address the structure and evolution of the NFI gene family and examine the role of the NFI transcription factors in the expression of mammary-gland specific proteins, including whey acidic protein and carboxyl ester lipase. We discuss current data showing that unique NFI proteins are expressed during lactation and involution and suggest that the NFI gene family likely has multiple important functions throughout mammary gland development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. J. Mitchell and R. Tjian (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.

    PubMed  Google Scholar 

  2. R. M. Gronostajski (2000). Role of NFI/CTF gene family in transcription and development. Gene 249:31–45.

    PubMed  Google Scholar 

  3. C. Santoro, N. Mermod, P. Andrews, and R. Tjian (1988). A family of human CCAAT-box-binding proteins active in transcription and DNA replication: Cloning and expression of multiple cDNAs. Nature 334:218–224.

    PubMed  Google Scholar 

  4. K. Nagata, R. Guggenheimer, T. Enomoto, J. Lichy, and J. Hurwitz (1982). Adenovirus DNA replication in vitro Identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. PNAS 79:6438–6442.

    PubMed  Google Scholar 

  5. K. Nagata, R. A. Guggenheimer, and J. Hurwitz (1983). Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. Proc. Natl. Acad. Sci. U.S.A. 80:6177–6181.

    PubMed  Google Scholar 

  6. K. Nagata, R. A. Guggenheimer, and J. Hurwitz (1983). Adenovirus DNA replication in vitro: Synthesis of full-length DNA with purified proteins. Proc. Natl. Acad. Sci. U.S.A. 80:4266–4270.

    PubMed  Google Scholar 

  7. R. T. Hay (1985). Origin of adenovirus DNA replication: Role of the nuclear factor I binding site in vivo. J. Mol. Biol. 186:129–136.

    PubMed  Google Scholar 

  8. J. Bosher, I. R. Leith, S. M. Temperley, M. Wells, R. T. Hay (1991). The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral DNA replication. J. Gen. Virol. 72:2975–2980.

    PubMed  Google Scholar 

  9. R. N. de Jong and P. C. van der Vliet (1999). Mechanism of DNA replication in eukaryotic cells: Cellular host factors stimulating adenovirus DNA replication. Gene 236:1–12.

    PubMed  Google Scholar 

  10. M. T. Armentero, M. Horwitz, and N Mermod (1994). Targeting of DNA polymerase to the adenovirus origin of DNA replication by interaction with nuclear factor I. Proc. Natl. Acad. Sci. U.S.A. 91:11537–11541.

    PubMed  Google Scholar 

  11. R. M. Gronostajski, K. Nagata, and J. Hurwitz (1984). Isolation of human DNA sequences that bind to nuclear factor I, a host protein involved in adenovirus DNA replication. Proc. Natl. Acad. Sci. U.S.A. 81:4013–4017.

    PubMed  Google Scholar 

  12. R. M. Gronostajski, S. Adhya, K. Nagata, R. A. Guggenheimer, and J. Hurwitz (1985). Site-specific DNA binding of nuclear factor I: Analyses of cellular binding sites. Mol. Cell. Biol. 5:964–971.

    PubMed  Google Scholar 

  13. J. A. Bogan, D. A. Natale, and M. L. Depamphilis (2000). Initiation of eukaryotic DNA replication: Conservative or liberal? J. Cell Physiol. 184:139–150.

    PubMed  Google Scholar 

  14. U. Borgmeyer, J. Nowock, and A. E. Sippel (1984). The TGGCA-binding protein: A eukaryotic nuclear protein recognizing a symmetrical sequence on double-stranded linear DNA. Nucleic. Acids Res. 12:4295–4311.

    PubMed  Google Scholar 

  15. P. A. J. Leegwater, P. C. van der Vliet, R. A. W. Rupp, J. Nowock, and A. E. Sippel (1986). Functional homology between the sequence-specific DNA-binding proteins nuclear factor I from HeLa cells and the TGGCA protein from chicken liver. EMBO J. 5:381–386.

    PubMed  Google Scholar 

  16. L. Hennighausen, U. Siebenlist, D. Danner, P. Leder, D. Rawlins, P. Rosenfeld, et al. (1985). High-affinity binding site for a specific nuclear protein in the human IgM gene. Nature 314:289–292.

    PubMed  Google Scholar 

  17. K. Jones, J. Kadonaga, P. Rosenfeld, T. Kelly, and R. Tjian (1987). A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48:79–89.

    PubMed  Google Scholar 

  18. A. Dorn, J. Bollekens, A. Staub, C. Benoist, and D. Mathis (1987). A multiplicity of CCAAT box-binding proteins. Cell 50:863–872.

    PubMed  Google Scholar 

  19. M. Raymondjean, S. Cereghini, and M. Yaniv (1988). Several distinct “CCAAT” box binding proteins coexist in eukaryotic cells. Proc. Natl. Acad. Sci. U.S.A. 85:757–761.

    PubMed  Google Scholar 

  20. R. Rupp, U. Kruse, G. Multhaup, U. Gobel, K. Beyreuther, and A. Sippel (1990). Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes. Nucleic. Acids Res. 18:2607–2616.

    PubMed  Google Scholar 

  21. U. Kruse, F. Qian, and AE. Sippel (1991). Identification of a fourth Nuclear Factor I gene in chicken by cDNA cloning: NFIX. Nucleic. Acids Res. 19:6641.

    PubMed  Google Scholar 

  22. G. Gil, J. R. Smith, J. L. Goldstein, C. A. Slaughter, K. Orth, M. S. Brown, et al. (1988). Multiple genes encode nuclear factor 1-like proteins that bind to the promoter for 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc. Natl. Acad. Sci. U.S.A. 85:8963–8967.

    PubMed  Google Scholar 

  23. T. Inoue, T. Tamura, T. Furuichi, and K. Mikoshiba (1990). Isolation of complementary DNAs encoding a cerebellum-enriched nuclear factor I family that activates transcription from the mouse myelin basic protein promoter. J. Biol. Chem. 265:19065–19070.

    PubMed  Google Scholar 

  24. A. Z. Chaudhry, C. E. Lyons, and R. M. Gronostajski (1997). Expression patterns of the four Nuclear Factor I genes during mouse embryogenesis indicate a potential role in development. Dev. Dyn. 208:313–325.

    PubMed  Google Scholar 

  25. M. Xu, S. Osada, M. Imagawa, and T. Nishihara (1997). Genomic organization of the rat nuclear factor I-A gene. J. Biochem. 122:795–801.

    PubMed  Google Scholar 

  26. F. Qian, U. Kruse, P. Lichter, and A. E. Sippel (1995). Chromosomal localization of the four genes NFIA, B, C, and X for the human transcription factor Nuclear Factor I by FISH. Genomics 28:66–73.

    PubMed  Google Scholar 

  27. D. Apt, Y. Liu, and H.-U. Bernard (1994). Cloning and functional analysis of spliced isoforms of human nuclear factor I–X: Interference with transcriptional activation by NFI/CTF in a cell-type specific manner. NAR 22:3825–3833.

    Google Scholar 

  28. R. A. Holt, G. M. Subramanian, A. Halpern, G. G. Sutton, R. Charlab, D. R. Nusskern, et al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149.

    PubMed  Google Scholar 

  29. P. Dehal, Y. Satou, R. K. Campbell, J. Chapman, B. Degnan, A. De Tomaso, et al. (2002). The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298:2157–2167.

    PubMed  Google Scholar 

  30. S. Bandyopadhyay and R. M. Gronostajski (1994). Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. JBC 269:29949–29955.

    Google Scholar 

  31. U. Kruse and A. Sippel (1994). The genes for transcription factor nuclear factor I give rise to corresponding splice variants between vertebrate species. J. Mol. Biol. 238:860–865.

    PubMed  Google Scholar 

  32. L. das Neves, C. Duchala, F. Godinho, M. Haxhiu, C. Colmenares, W. Macklin, et al. (1999). Disruption of the murine Nuclear Factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus and agenesis of the corpus callosum. PNAS 96:11946–11951.

    PubMed  Google Scholar 

  33. H. Baumeister, R. M. Gronostajski, G. E. Lyons, and F. L. Margolis (1999). Identification of NFI-binding sites and cloning of NFI-cDNAs suggest a regulatory role for NFI transcription factors in olfactory neuron gene expression. Mol. Brain Res. 72:65–79.

    PubMed  Google Scholar 

  34. C. F. Fletcher, N. A. Jenkins, N. G. Copeland, A. Z. Chaudhry, and R. M. Gronostajski (1999). Exon structure of the nuclear factor I DNA-binding domain from C. elegans to mammals. Mamm. Genome 10:390–396.

    PubMed  Google Scholar 

  35. S. Aparicio, J. Chapman, E. Stupka, N. Putnam, J. M. Chia, P. Dehal, et al. (2002). Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310.

    PubMed  Google Scholar 

  36. G. A. Elder, Z. Z. Liang, S. E. Snyder, and R. A. Lazzarini (1992). Multiple nuclear factors interact with the promoter of the human Neurofilament-M gene. Mol. Brain Res. 15:99–107.

    PubMed  Google Scholar 

  37. F. K. Bedford, D. Julius, and H. A. Ingraham (1998). Neuronal expression of the 5HT3 serotonin receptor gene requires nuclear factor 1 complexes. J. Neurosci. 18:6186–6194.

    PubMed  Google Scholar 

  38. T. Tamura, M. Masayuki, K. Ikenaka, and K. Mikoshiba (1988). Analysis of transcription control elements of the mouse myelin basic protein gene in HeLa cell extracts: Demonstration of a strong NFI-binding motif in the upstream region. Nucleic Acids Res. 16:11441–11459.

    PubMed  Google Scholar 

  39. P. Leahy, D. R. Crawford, G. Grossman, R. M. Gronostajski, and R. W. Hanson (1999). CREB binding protein coordinates the function of multiple transcription factors includingnuclear factor I to regulate phosphoenolpyruvate carboxykinase (GTP) gene transcription. J. Biol. Chem. 274:8813–8822.

    PubMed  Google Scholar 

  40. D. M. Faust, A. M. Catherin, S. Barbaux, L. Belkadi, T. Imaizumi-Scherrer, and M. C. Weiss (1996). The activity of the highly inducible mouse phenylalanine hydroxylase gene promoter is dependent upon a tissue-specific, hormone-inducible enhancer. Mol. Cell. Biol. 16:3125–3137.

    PubMed  Google Scholar 

  41. B. Bois-Joyeux and J. L. Danan (1994). Members of the CAAT/enhancer-binding protein, hepatocyte nuclear factor-1 and nuclear factor-1 families can differentially modulate the activities of the rat alpha-fetoprotein promoter and enhancer. Biochem. J. 301:49–55.

    PubMed  Google Scholar 

  42. C. J. Bachurski, S. E. Kelly, S. W. Glasser, and T. A. Currier (1997). Nuclear factor I family members regulate the transcription of surfactant protein-C. J. Biol. Chem. 272:32759–32766.

    PubMed  Google Scholar 

  43. S. S. Mukhopadhyay, S. L. Wyszomierski, R. M. Gronostajski, and J. M. Rosen (2001). Differential interactions of specific nuclear factor I isoforms with the glucocorticoid receptor and STAT5 in the cooperative regulation of WAP gene transcription. Mol. Cell. Biol. 21:6859–6869.

    PubMed  Google Scholar 

  44. T. Grewal, M. Theisen, U. Borgmeyer, T. Grussenmeyer, R. A. Rupp, A. Stief, et al. (1992). The-61-kilobase chicken lysozyme enhancer is a multifactorial complex containing several cell-type-specific elements. Mol. Cell. Biol. 12:2339–2350.

    PubMed  Google Scholar 

  45. Y. Xie, V. Madelian, J. Zhang, G. Ling, and X. Ding (2001). Activation of the NPTA element of the CYP2A3 gene by NFI-A2, a nasal mucosa-selective nuclear factor 1 isoform. Biochem. Biophys. Res. Commun. 289:1225–1228.

    PubMed  Google Scholar 

  46. K. Kido, H. Bannert, R. M. Gronostajski, and R. M. Flugel (2002). Bel1-mediated trans-activation of the spumaretroviral internal promoter is repressed by nuclear factor I. J. Biol. Chem.

  47. P. Jethanandani and E. Goldberg (2001). ldhc expression in non-germ cell nuclei is repressed by NF-I binding. J. Biol. Chem. 276:35414–35421.

    PubMed  Google Scholar 

  48. C. S. Song, M. H. Jung, P. C. Supakar, B. Chatterjee, and A. K. Roy (1999). Negative regulation of the androgen receptor gene promoter by NFI and an adjacently located multiprotein-binding site. Mol. Endocrinol. 13:1487–1496.

    PubMed  Google Scholar 

  49. N. Mermod, E. O'Neill, T. Kelly, and R. Tjian (1989). The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58:741–753.

    PubMed  Google Scholar 

  50. G. Nebl and A. Cato (1995). NFI/X proteins: A class of NFI family of transcription factors with positive and negative regulatory domains. Cell. Mol. Biol. Res. 41:85–95.

    PubMed  Google Scholar 

  51. U. Kruse and A. E. Sippel (1994). Transcription factor nuclear factor I proteins form stable homo-and heterodimers. FEBS Lett. 348:46–50.

    PubMed  Google Scholar 

  52. A. Z. Chaudhry, A. D. Vitullo, and R. M. Gronostajski (1998). Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J. Biol. Chem. 273:18538–18546.

    PubMed  Google Scholar 

  53. A. Z. Chaudhry, A. D. Vitullo, and R. M. Gronostajski (1999). Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J. Biol. Chem. 274:7072–7081.

    PubMed  Google Scholar 

  54. B. Gao and G. Kunos (1998). Cell type-specific transcriptional activation and suppression of the alpha1B adrenergic receptor gene middle promoter by nuclear factor 1. J. Biol. Chem. 273:31784–31787.

    PubMed  Google Scholar 

  55. A. Grunder, T. T. Ebel, M. Mallo, G. Schwarzkopf, T. Shimizu, A. E. Sippel, et al. (2002). Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech. Dev. 112:69–77.

    PubMed  Google Scholar 

  56. G. Steele-Perkins, K. G. Butz, G. E. Lyons, M. Zeichner-David, H.-J. Kim, M. I. Cho, et al. (2003). Essential role for NFI-C/CTF transcription-replication factor in tooth root development. MCB 23:1075–1084.

    PubMed  Google Scholar 

  57. T. Shu, K. G. Butz, C. Plachez, R. M. Gronostajski, and L. J. Richards (2003). Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J. Neurosci. 23:203–212.

    PubMed  Google Scholar 

  58. J. P. Simons, M. McClenaghan, and A. J. Clark (1987). Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328:530–532.

    PubMed  Google Scholar 

  59. H. Lubon and L. Hennighausen (1988). Conserved region of the rat alpha-lactalbumin promoter is a target site for protein binding in vitro. Biochem. J. 256:391–396.

    PubMed  Google Scholar 

  60. C. J. Watson, K. E. Gordon, M. Robertson, and A. J. Clark (1991). Interaction of DNA-binding proteins with a milk protein gene promoter in vitro—Identification of a mammary gland-specific factor. Nucleic Acids Res. 19:6603–6610.

    PubMed  Google Scholar 

  61. B. Rajput, N. L. Shaper, and J. H. Shaper (1996). Transcriptional regulation of murine beta1,4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J. Biol. Chem. 271:5131–5142.

    PubMed  Google Scholar 

  62. M. Kannius-Janson, U. Lidberg, K. Hulten, A. Gritli-Linde, G. Bjursell, and J. Nilsson (1998). Studies of the regulation of the mouse carboxyl ester lipase gene in mammary gland. Biochem. J. 336(Pt 3):577–585.

    PubMed  Google Scholar 

  63. S. Mink, E. Hartig, P. Jennewein, W. Doppler, and A. C. B. Cato (1992). A mammary cell-specific enhancer in MMTV DNA is composed of multiple regulatory elements including binding sites For CTF/NFI and a novel transcription factor, Mammary Cell-Activating Factor. Mol. Cell. Biol. 12:4906–4918.

    PubMed  Google Scholar 

  64. E. Furlong, N. K. Keon, F. D. Thornton, T. Rein, and F. Martin (1996). Expression of a 74-kDa nuclear factor 1 (NF1) protein is induced in mouse mammary gland involution. Involution-enhanced occupation of a twin NF1 binding element in the testosterone-repressed prostate message-2/clusterin promoter. J. Biol. Chem. 271:29688–29697.

    PubMed  Google Scholar 

  65. R. Kane, J. Murtagh, D. Finlay, A. Marti, R. Jaggi, D. Blatchford, et al. (2002). Transcription factor NFIC undergoes N-glycosylation during early mammary gland involution. J. Biol. Chem. 277:25893–25903.

    PubMed  Google Scholar 

  66. C. H. Streuli, G. M. Edwards, M. Delcommenne, C. B. Whitelaw, T. G. Burdon, C. Schindler, et al. (1995). Stat5 as a target for regulation by extracellular matrix. J. Biol. Chem. 270:21639–21644.

    PubMed  Google Scholar 

  67. P. K. Qasba, A. M. Dandekar, T. M. Horn, I. Losonczy, M. Siegel, K. A. Sobiech, et al. (1982). Milk protein gene expression in the rat mammary gland. Crit. Rev. Food Sci. Nutr. 16:165–186.

    PubMed  Google Scholar 

  68. J. W. Perry and T. Oka (1984). The study of differentiative potential of the lactating mouse mammary gland in organ culture. In Vitro 20:59–65.

    PubMed  Google Scholar 

  69. Y. J. Topper, K. R. Nicholas, L. Sankaran, and J. Kulski (1984). Insulin as a developmental hormone. Prog. Clin. Biol. Res. 142:63–77.

    PubMed  Google Scholar 

  70. M. Ono and T. Oka (1980). The differential actions of cortisol on the accumulation of alpha-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19:473–480.

    PubMed  Google Scholar 

  71. M. Ono, J. W. Perry, and T. Oka (1981). Concentration-dependent differential effects of cortisol on synthesis of alpha-lactalbumin and of casein in cultured mouse mammary gland explants: Importance of prolactin concentration. In Vitro 17:121–128.

    PubMed  Google Scholar 

  72. S. J. Quirk, J. E. Gannell, M. J. Fullerton, and J. W. Funder (1986). Mechanisms of biphasic action of glucocorticoids on alpha-lactalbumin production by rat mammary gland explants. J. Steroid Biochem. 24:413–416.

    PubMed  Google Scholar 

  73. N. Terada, L. J. Leiderman, and T. Oka (1983). The interaction of cortisol and prostaglandins on the phenotypic expression of the alpha-lactalbumin gene in the mouse mammary gland in culture. Biochem. Biophys. Res. Commun. 111:1059–1065.

    PubMed  Google Scholar 

  74. L. Hall, D. C. Emery, M. S. Davies, D. Parker, and R. K. Craig (1987). Organization and sequence of the human alpha-lactalbumin gene. Biochem. J. 242:735–742.

    PubMed  Google Scholar 

  75. R. Gronostajski (1987). Site-specific DNA binding of nuclear factor I: Effect of the spacer region. Nucleic. Acids Res. 15:5545–5559.

    PubMed  Google Scholar 

  76. S. Harris, M. McClenaghan, J. P. Simons, S. Ali, and A. J. Clark (1991). Developmental regulation of the sheep beta-lactoglobulin gene in the mammary gland of transgenic mice. Dev. Genet. 12:299–307.

    PubMed  Google Scholar 

  77. C. B. Whitelaw, S. Harris, M. McClenaghan, J. P. Simons, and A. J. Clark (1992). Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem. J. 286(Pt 1):31–39.

    PubMed  Google Scholar 

  78. R. M. McKenzie and B. L. Larson (1978). Isolation and partial characterization of rare casein proteins. J. Dairy Sci. 61:885–889.

    PubMed  Google Scholar 

  79. S. Li and J. M. Rosen (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol. 15:2063–2070.

    PubMed  Google Scholar 

  80. J. F. Levine and F. E. Stockdale (1985). Cell-cell interactions promote mammary epithelial cell differentiation. J. Cell. Biol. 100:1415–1422.

    PubMed  Google Scholar 

  81. T. C. Dale, M. J. Krnacik, C. Schmidhauser, C. L. Yang, M. J. Bissell, and J. M. Rosen (1992). High-level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3′ untranslated region. Mol. Cell. Biol. 12:905–914.

    PubMed  Google Scholar 

  82. S. Li and J. M. Rosen (1994). Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J. Biol. Chem. 269:14235–14243.

    PubMed  Google Scholar 

  83. M. Kannius-Janson, E. M. Johansson, G. Bjursell, and J. Nilsson (2002). Nuclear factor 1-C2 contributes to the tissue-specific activation of a milk protein gene in the differentiating mammary gland. J. Biol. Chem. 277:17589–17596.

    PubMed  Google Scholar 

  84. R. Kane, D. Finlay, T. Lamb, and F. Martin (2000). Transcription factor NF 1 expression in involuting mammary gland. Adv. Exp. Med. Biol. 480:117–122.

    PubMed  Google Scholar 

  85. R. L. Hill, K. Brew, T. C. Vanaman, I. P. Trayer, and P. Mattock (1968). The structure, function, and evolution of alpha-lactalbumin. Brookhaven Symp. Biol. 21:139–154.

    PubMed  Google Scholar 

  86. R. W. Turkington, K. Brew, T. C. Vanaman, and R. L. Hill (1968). The hormonal control of lactose synthetase in the developing mouse mammary gland. J. Biol. Chem. 243:3382–3387.

    PubMed  Google Scholar 

  87. A. Harduin-Lepers, N. L. Shaper, J. A. Mahoney, and J. H. Shaper (1992). Murine beta 1,4-galactosyltransferase: Round spermatid transcripts are characterized by an extended 5′-untranslated region. Glycobiology 2:361–368.

    PubMed  Google Scholar 

  88. A. Harduin-Lepers, J. H. Shaper, and N. L. Shaper (1993). Characterization of two cis-regulatory regions in the murine beta 1,4-galactosyltransferase gene. Evidence for a negative regulatory element that controls initiation at the proximal site. J. Biol. Chem. 268:14348–14359.

    PubMed  Google Scholar 

  89. A. S. Lidmer, M. Kannius, L. Lundberg, G. Bjursell, and J. Nilsson (1995). Molecular cloning and characterization of the mouse carboxyl ester lipase gene and evidence for expression in the lactating mammary gland. Genomics 29:115–122.

    PubMed  Google Scholar 

  90. N. E. Hynes, B. Groner, and R. Michalides (1984). Mouse mammary tumor virus: Transcriptional control and involvement in tumorigenesis. Adv. Cancer Res. 41:155–184.

    PubMed  Google Scholar 

  91. B. Munoz and F. F. BolanderJr. (1989). Prolactin regulation of mouse mammary tumor virus (MMTV) expression in normal mouse mammary epithelium. Mol. Cell Endocrinol. 62:23–29.

    PubMed  Google Scholar 

  92. S. Mink, H. Ponta, and A. C. Cato (1990). The long terminal repeat region of the mouse mammary tumour virus contains multiple regulatory elements. Nucleic Acids Res. 18:2017–2024.

    PubMed  Google Scholar 

  93. J. A. Sensibar, M. D. Griswold, S. R. Sylvester, R. Buttyan, C. W. Bardin, C. Y. Cheng, et al. (1991). Prostatic ductal system in rats: Regional variation in localization of an androgen-repressed gene product, sulfated glycoprotein-2. Endocrinology 128:2091–2102.

    PubMed  Google Scholar 

  94. I. S. Sawczuk, G. Hoke, C. A. Olsson, J. Connor, and R. Buttyan (1989). Gene expression in response to acute unilateral ureteral obstruction. Kidney Int. 35:1315–1319.

    PubMed  Google Scholar 

  95. S. Bettuzzi, L. Troiano, P. Davalli, F. Tropea, M. C. Ingletti, E. Grassilli, et al. (1991). In vivo accumulation of sulfated glycoprotein 2 mRNA in rat thymocytes upon dexamethasone-induced cell death. Biochem. Biophys. Res. Commun. 175:810–815.

    PubMed  Google Scholar 

  96. R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115:49–58.

    PubMed  Google Scholar 

  97. R. Buttyan, Z. Zakeri, R. Lockshin, and D. Wolgemuth (1988). Cascade induction of c-fos, c-myc, and heat shock 70K transcripts during regression of the rat ventral prostate gland. Mol. Endocrinol. 2:650–657.

    PubMed  Google Scholar 

  98. R. T. Hay (1985). The origin of adenovirus DNA replicaton: Minimal DNA sequence requirement in vivo. EMBO J. 4:421–426.

    PubMed  Google Scholar 

  99. S. P. Jackson and R. Tjian (1988). O-glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation. Cell 55:125–133.

    PubMed  Google Scholar 

  100. D. R. Blatchford, L. H. Quarrie, E. Tonner, C. McCarthy, D. J. Flint, and C. J. Wilde (1999). Influence of microenvironment on mammary epithelial cell survival in primary culture. J. Cell. Physiol. 181:304–311.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finian Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murtagh, J., Martin, F. & Gronostajski, R.M. The Nuclear Factor I (NFI) Gene Family in Mammary Gland Development and Function. J Mammary Gland Biol Neoplasia 8, 241–254 (2003). https://doi.org/10.1023/A:1025909109843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025909109843

Navigation