Skip to main content
Log in

β-Catenin and Tcfs in Mammary Development and Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

β-Catenin regulates cell–cell adhesion and transduces signals from many pathways to regulate the transcriptional activities of Tcf/Lef DNA binding factors. Gene ablation and transgenic expression studies strongly support the concept that β-catenin together with Lef/Tcf factors act as a switch to determine cell fate and promote cell survival and proliferation at several stages during mammary gland development. Mice expressing the negative regulator of Wnt/β-catenin signaling (K14-Dkk) fail to form mammary buds, and those lacking Lef-1 show an early arrest in this process at stage E13.5. Stabilized ΔN89β-catenin initiates precocious alveologenesis during pubertal development, and negative regulators of endogenous β-catenin signaling suppress normal alveologenesis during pregnancy. Stabilized β-catenin induces hyperplasia and mammary tumors in mice. Each of the β-catenin-induced phenotypes is accompanied by upregulation of the target genes cyclin D1 and c-myc. Cyclin D1, however, is dispensable for tumor formation and the initiation of alveologenesis but is essential for later alveolar expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Ozawa, H. Baribault, and R. Kemler (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8:1711–1717.

    PubMed  Google Scholar 

  2. G. Berx, A. M. Cleton-Jansen, F. Nollet, W. J. de Leeuw, M. van de Vijver, C. Cornelisse, et al. (1995). E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 14:6107–6115.

    PubMed  Google Scholar 

  3. O. Boussadia, S. Kutsch, A. Hierholzer, V. Delmas, and R. Kemler (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115:53–62.

    PubMed  Google Scholar 

  4. R. B. Hazan, G. R. Phillips, R. F. Qiao, L. Norton, and S. A. Aaronson (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion and metastasis. J. Cell Biol. 148:779–790.

    PubMed  Google Scholar 

  5. K. Suyama, I. Shapiro, M. Guttman, and R. B. Hazan (2002). A signaling pathway leading to metastasis is controlled by Ncadherin and the FGF receptor. Cancer Cell 2:301–314.

    PubMed  Google Scholar 

  6. G. Radice, C. Ferreira-Cornwall, S. D. Robinson, H. Rayburn, L. A. Chodosh, M. Takeichi, et al. (1997). Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol. 139:1025–1032.

    PubMed  Google Scholar 

  7. V. Delmas, P. Pla, H. Feracci, J. P. Thiery, R. Kemler, and L. Larue (1999). Expression of the cytoplasmic domain of Ecadherin induces precocious mammary epithelial alveolar formation and affects cell polarity and cell-matrix integrity. Dev. Biol. 216:491–506.

    PubMed  Google Scholar 

  8. Y. T. Chen, D. B. Stewart, and W. J. Nelson (1999). Coupling assembly of the E-cadherin/#x03B2-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144:687–699.

    PubMed  Google Scholar 

  9. V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219.

    PubMed  Google Scholar 

  10. R. Eelkema and P. Cowin (2001). General themes in cell-cell junctions and adhesion. In M. Cereijido, and J. Anderson (eds.), Tight Junctions, Vol. 2, CRC Press, Boca Raton, pp. 121–145.

    Google Scholar 

  11. S. Kuroda, M. Fukata, M. Nakagawa, K. Fujii, T. Nakamura, T. Ookubo, et al. (1998). Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherinmediated cell-cell adhesion. Science 281:832–835.

    PubMed  Google Scholar 

  12. H. Hoschuetzky, H. Aberle, and R. Kemler (1994). B-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell Biol. 127:1375–1381.

    PubMed  Google Scholar 

  13. Y. Kanai, A. Ochai, T. Shibata, T. Oyama, S. Ushijima, S. Akimoto, et al. (1995). c-erbB-2 gene product directly associates with β-catenin and plakoglobin. Biochem. Biophys. Res. Commun. 208:1067–1072.

    PubMed  Google Scholar 

  14. L. Adam, R. K. Vadlamudi, P. McCrea, and R. Kumar (2001). Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/#x03B2-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J. Biol. Chem. 276:28443–28450.

    PubMed  Google Scholar 

  15. J. A. Schroeder, M. C. Adriance, E. J. McConnell, M. C. Thompson, B. Pockaj, and S. J. Gendler (2002). ErbB-#x03B2catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J. Biol. Chem. 277:22692–22698.

    PubMed  Google Scholar 

  16. A. H. Huber, W. J. Nelson, W. I. Weis (1997). Three-dimensional structure of the armadillo repeat region of b-catenin. Cell 90:871–882.

    PubMed  Google Scholar 

  17. S. Roura, S. Miravet, J. Piedra, A. Garcia de Herreros, and M. Dunach (1999). Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem. 274:36734–36740.

    PubMed  Google Scholar 

  18. H. Lickert, A. Bauer, R. Kemler, and J. Stappert (2000). Casein kinase II phosphorylation of E-cadherin increases Ecadherin/#x03B2-catenin interaction and strengthens cell-cell adhesion. J. Biol. Chem. 275:5090–5095.

    PubMed  Google Scholar 

  19. J. Sap Interactions between protein tyrosine phosphatases and cell adhesion molecules. In P. Cowinand and M. Klymkowsky (eds.), Cytoskeletal-Membrane Interactions and Signal Transduction, Landes, Austin, (1997).

    Google Scholar 

  20. C. L. Sommers, E. L. Gelmann, R. Kemler, P. Cowin, and S. W. Byers (1994). Alterations in β-catenin phosphorylation and plakoglobin expression in human breast cancer cells. Cancer Res. 54:3544–3552.

    PubMed  Google Scholar 

  21. M. Yamamoto, A. Bharti, and D. Kufe (1997). Interaction of the DF3/MUC1breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem. 12492–12494.

  22. K. L. Carraway, S. A. Price-Schiavi, M. Komatsu, S. Jepson, A. Perez, and C. A. Carraway (2001). Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 6:323–337.

    PubMed  Google Scholar 

  23. K. L. Carraway, V. P. Ramsauer, B. Haq, and C. A. Carothers Carraway (2003). Cell signaling through membrane mucins. Bioessays 25:66–71.

    PubMed  Google Scholar 

  24. Y. Li, A. Bharti, D. Chen, J. Gong, and D. Kufe (1998). Interaction of GSK3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. MCB 7216–7224.

  25. Y. Li, H. Kuwahara, J. Ren, G. Wen, and D. Kufe (2001). The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 #x03B2 and #x03B2-catenin. J. Biol. Chem. 276:6061–6064.

    PubMed  Google Scholar 

  26. S. Munemitsu, I. Albert, B. Rubinfeld, and P. Polakis (1996). Deletion of an amino-terminal sequence stabilizes β-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol. Cell. Biol. 16:4088–4094.

    PubMed  Google Scholar 

  27. C. J. Gottardi, and B. M. Gumbiner (2001). Adhesion signaling: How #x03B2-catenin interacts with its partners. Curr. Biol. 11:R792-R794.

    PubMed  Google Scholar 

  28. T. Ishitani, J. Ninomiya-Tsuji, S. Nagai, M. Nishita, M. Meneghini, N. Barker, et al. (1999). The Tak1-NLK-MAPKrelated pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399:798–802.

    PubMed  Google Scholar 

  29. C. E. Rocheleau, J. Yasuda, T. H. Shin, R. Lin, H. Sawa, H. Okano, et al. (1999). WRM-1 activates the Lit-1 protein kinase to transduce anterior/posterior polarity signals in C. Elegans. Cell 97:717–726.

    Google Scholar 

  30. D. Kang, S. Soriano, X. Xia, C. Eberhart, B. De Strooper, H. Zheng, et al. (2002). Presenilin couples the paired phosphorylation of #x03B2-catenin independent of Axin. Implications for #x03B2-catenin activation in tumorigenesis. Cell 110:751.

    PubMed  Google Scholar 

  31. C. Lamberti, K. M. Lin, Y. Yamamoto, U. Verma, I. M. Verma, S. Byers, et al. (2001). Regulation of #x03B2-catenin function by the IkappaB kinases. J. Biol. Chem. 276:42276–42286.

    PubMed  Google Scholar 

  32. W. Holnthoner, M. Pillinger, M. Groger, K. Wolff, A. W. Ashton, C. Albanese, et al. (2002). Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J. Biol. Chem.

  33. S. I. Matsuzawa, and J. C. Reed (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for #x03B2-catenin degradation linked to p53 responses. Mol. Cell 7:915–926.

    PubMed  Google Scholar 

  34. S. Persad, A. A. Troussard, T. R. McPhee, D. J. Mulholland, S. Dedhar (2001). Tumor suppressor PTEN inhibits nuclear accumulation of #x03B2-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 153:1161–1174.

    PubMed  Google Scholar 

  35. E. Sadot, B. Geiger, M. Oren, A. Ben-Ze'ev (2001). Downregulation of #x03B2-catenin by activated p53. Mol. Cell Biol. 21:6768–6781.

    PubMed  Google Scholar 

  36. J. Liu, J. Stevens, C. A. Rote, H. J. Yost, Y. Hu, K. L. Neufeld, et al. (2001). Siah-1 mediates a novel #x03B2-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7:927–936.

    PubMed  Google Scholar 

  37. S. Fukumoto, C. M. Hsieh, K. Maemura, M. D. Layne, S. F. Yet, K. H. Lee, et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem. 276:17479–17483.

    PubMed  Google Scholar 

  38. F. Rijsewijk, M. Schuermann, E. Wagenaar, P. Parren, D. Weigel, and R. Nusse (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649–657.

    PubMed  Google Scholar 

  39. T. F. Lan and P. Leder (1997). Wnt10B directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.

    PubMed  Google Scholar 

  40. A. Tsukamoto, R. Grosschedl, R. Guzman, T. Parslow, H. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625.

    PubMed  Google Scholar 

  41. H. Roelink, E. Wagenaar, S. Lopes da Silva, and R. Nusse (1990). Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proc. Natl. Acad. Sci. U. S. A. 87:4519–4523.

    PubMed  Google Scholar 

  42. S. J. Weber-Hall, D. J. Phippard, C. C. Niemeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214.

    PubMed  Google Scholar 

  43. T. A. Buhler, T. C. Dale, C. Kieback, R. C. Humphreys, and J. M. Rosen (1993). Localization and quantification of Wnt-2 gene expression in mouse mammary development. Dev. Biol. 155:87–96.

    PubMed  Google Scholar 

  44. M. J. Smalley and T. C. Dale (2001). Wnt signaling and mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia 6:37–52.

    PubMed  Google Scholar 

  45. C. Brisken, S. Park, T. Vass, J. P. Lydon, B. W. O'Malley, and R. A. Weinberg (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. U. S. A. 95:5076–5081.

    PubMed  Google Scholar 

  46. C. Brisken, A. Heineman, T. Chavarra, B. Elenbaas, J. Tan, S. K. Dey, et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 14:650–654.

    PubMed  Google Scholar 

  47. J. Huelsken and W. Birchmeier (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553.

    PubMed  Google Scholar 

  48. V. Korinek, N. Barker, P. J. Morin, D. van Wichen, R. de Weger, K. Kinzler, et al. (1997). Constitutive transcriptional activation by a β-catenin-tcf complex in APC-/-colon carcinoma. Science 275:1784–1787.

    PubMed  Google Scholar 

  49. R. Cavallo, R. T. Cox, M. Moline, J. Roose, G. A. Ploevoy, H. Clevers, et al. (1998). Drosophila Tcf and Groucho interact to repress wingless signalling activity. Nature 395:604–608.

    PubMed  Google Scholar 

  50. L. Waltzer and M. Bienz (1998). Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395:521–525.

    PubMed  Google Scholar 

  51. S. K. Chan and G. Struhl (2002). Evidence that Armadillo transduces wingless by mediating nuclear export or cytosolic activation of Pangolin. Cell 111:265–280.

    PubMed  Google Scholar 

  52. C. van Genderen, R. M. Okamura, I. Farinas, R.-G. Quo, T. G. Parslow, L. Bruhn, et al. (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in Lef-1 deficient mice. Genes Dev. 8:2691–2704.

    PubMed  Google Scholar 

  53. J. Foley, P. Dann, J. Hong, J. Cosgrove, B. Dreyer, D. Rimm, et al. (2001). Parathyroid hormone-related protein maintains mammaryepithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 128:513–525.

    PubMed  Google Scholar 

  54. S. Millar (1997). The role of patterning genes in epidermal differentiation. In P. Cowin and M. Klymkowsky (eds.), Cytoskeletal-Membrane Interactions and Signal Transduction, Landes, Austin, pp. 87–103.

    Google Scholar 

  55. A. Imbert, R. Eelkema, S. Jordan, H. Feiner, P. Cowin (2001). ΔN89β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol. 153:555–568.

    PubMed  Google Scholar 

  56. R. C. Gallagher, T. Hay, V. Meniel, C. Naughton, T. J. Anderson, H. Shibata, et al. (2002). Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21:6446–6457.

    PubMed  Google Scholar 

  57. T. R. Rowlands, I. Pechenkina, R. G. Pestell, and P. Cowin. Intersections between #x03B2-catenin and cyclin D1 in mammary gland development and tumorigenesis. Manuscript submitted for publication.

  58. J. S. Michaelson and P. Leder (2001). #x03B2-catenin is a down-stream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 20:5093–5099.

    PubMed  Google Scholar 

  59. W. Hsu, R. Shakya, and F. Costantini (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155:1055–1064.

    PubMed  Google Scholar 

  60. S. B. Tepera, P. D. McCrea, and J. M. Rosen (2003). A #x03B2catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci. 116:1137–1149.

    PubMed  Google Scholar 

  61. W. T. Montross, H. Ji, and P. D. McCrea (2000). A #x03B2catenin/engrailed chimera selectively suppressesWntsignaling. J. Cell Sci. 113:1759–1770.

    PubMed  Google Scholar 

  62. V. Fantl, A. W. Edwards, J. H. Steel, B. K. Vonderhaar, and D. Dickson (1999). Impaired mammary gland development in Cyc-/-mice during pregnancy and lactation is epithelial cell autonomous. Development 212:1–11.

    Google Scholar 

  63. P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    PubMed  Google Scholar 

  64. V. Fantl, G. Stamp, A. Andrews, I. Rosewell, C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9:2364–2372.

    PubMed  Google Scholar 

  65. K. Miyoshi, J. M. Shillingford, F. Le Provost, F. Gounari, R. Bronson, H. von Boehmer, et al. (2002). Activation of #x03B2catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc. Natl. Acad. Sci. U. S. A. 99:219–224.

    PubMed  Google Scholar 

  66. K. Miyoshi, A. Rosner, M. Nozawa, C. Byrd, F. Morgan, E. Landesman-Bollag, et al. (2002). Activation of different Wnt/#x03B2-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 21:5548–5556.

    PubMed  Google Scholar 

  67. A. R. Moser, C. Luongo, K. A. Gould, M. K. McNeley, A. R. Shoemaker, and W. F. Dove (1995). ApcMin: A mouse model for intestinal and mammary tumorigenesis. Eur. J. Cancer 31A:1061–1064.

    PubMed  Google Scholar 

  68. U. Gat, R. Dasgupta, L. Degenstein, E. Fuchs (1998). De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95:605–614.

    PubMed  Google Scholar 

  69. J. Huelsken, R. Vogel, B. Erdmann, G. Cotsarelis, and W. Birchmeier (2001). #x03B2-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545.

    PubMed  Google Scholar 

  70. R. DasGupta, H. Rhee, and E. Fuchs (2002). A developmental conundrum:Astabilized form of #x03B2-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells. J. Cell Biol. 158:331–344.

    PubMed  Google Scholar 

  71. F. Ugolini, E. Charafe-Jauffret, V. J. Bardou, J. Geneix, J. Adelaide, F. Labat-Moleur, et al. (2001). WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20:5810–5817.

    PubMed  Google Scholar 

  72. S. C. Wong, S. F. Lo, K. C. Lee, J. W. Yam, J. K. Chan, and W. L. Wendy Hsiao (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J. Pathol. 196:145–153.

    PubMed  Google Scholar 

  73. E. L. Huguet, J. A. McMahon, A. P. McMahon, R. Bicknell, and A. L. Harris (1994). Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 54:2615–2621.

    PubMed  Google Scholar 

  74. T. C. Dale, S. J. Weber-Hall, K. Smith, E. L. Huguet, H. Jayatilake, B. A. Gusterson, et al. (1996). Compartment switching of Wnt-2 expression in human breast tumors. Cancer Res. 56:4320–4323.

    PubMed  Google Scholar 

  75. M. Jonsson, J. Dejmek, P. O. Bendahl, and T. Andersson (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62:409–416.

    PubMed  Google Scholar 

  76. S. Lejeune, E. L. Huguet, A. Hamby, R. Poulsom, and A. L. Harris (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer Res. 1:215–222.

    PubMed  Google Scholar 

  77. H. Kirikoshi, H. Sekihara, and M. Katoh (2001). Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNgamma and up-regulation of WNT14B by #x03B2-estradiol. Int. J. Oncol. 19:1221–1225.

    PubMed  Google Scholar 

  78. M. T. Webster, M. Rozycka, E. Sara, E. Davis, M. Smalley, N. Young, et al. (2000). Sequence variants of the axin gene in breast, colon, and other cancers: An analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer 28:443–453.

    PubMed  Google Scholar 

  79. K. Furuuchi, M. Tada, H. Yamada, A. Kataoka, N. Furuuchi, J. Hamada, et al. (2000). Somatic mutations of the APC gene in primary breast cancers. Am. J. Pathol. 156:1997–2005.

    PubMed  Google Scholar 

  80. S. C. Abraham, B. Nobukawa, F. M. Giardiello, S. R. Hamilton, T. T. Wu (2000). Fundic gland polyps in familial adenomatous polyposis: Neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am. J. Pathol. 157:747–754.

    PubMed  Google Scholar 

  81. A. K. Virmani, A. Rathi, U. G. Sathyanarayana, A. Padar, C. X. Huang, H. T. Cunnigham, et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin. Cancer Res. 7:1998–2004.

    PubMed  Google Scholar 

  82. E. J. Sawyer, A. M. Hanby, A. J. Rowan, C. E. Gillett, R. E. Thomas, R. Poulsom, et al. (2002). TheWnt pathway, epithelialstromal interactions, and malignant progression in phyllodes tumours. J. Pathol. 196:437–444.

    PubMed  Google Scholar 

  83. S. Y. Lin, W. Xia, J. C. Wang, K. Y. Kwong, B. Spohn, Y. Wen, et al. (2000). #x03B2-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U. S. A. 97:4262–4266.

    PubMed  Google Scholar 

  84. J. Roose and H. Clevers (1999). TCF transcription factors: Molecular switches in carcinogenesis. Biochim. Biophys. Acta 1424:M23-M37.

    PubMed  Google Scholar 

  85. J. Roose, G. Huls, M. van Beest, P. Moerer, K. van der Horn, R. Goldschmeding, et al. (1999). Synergy between tumor suppressor APC and the #x03B2-catenin-Tcf4 target Tcf1. Science 285:1923–1926.

    PubMed  Google Scholar 

  86. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnols, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.

    PubMed  Google Scholar 

  87. E. A. Musgrove, R. Hui, K. J. Sweeney, C. K. Watts, R. L. Sutherland (1996). Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia 1:153–162.

    PubMed  Google Scholar 

  88. C. Gillett, V. Fantl, R. Smith, C. Fisher, J. Bartek, C. Dickson, et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54:1812–1817.

    PubMed  Google Scholar 

  89. E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/cmyc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49:465–475.

    PubMed  Google Scholar 

  90. S. Aulmann, M. Bentz, H. P. Sinn (2002). C-myc oncogene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res. Treat 74:25–31.

    PubMed  Google Scholar 

  91. M. Shtutman, J. Zhiurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, et al. (1999). The cyclin D1 gene is a target of the #x03B2-catenin LEF1 pathway. Proc. Natl. Acad. Sci. U. S. A. 96:5522–5527.

    PubMed  Google Scholar 

  92. O. Tetsu and F. McCormick (1999). β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426.

    PubMed  Google Scholar 

  93. T.-C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, et al. (1998). Identification of c-myc as a target of the APC pathway. Science 281:1509–1512.

    PubMed  Google Scholar 

  94. T. Ishitani, J. Ninomiya-Tsuji, and K. Matsumoto (2003). Regulation of lymphoid enhancer factor 1/T-cell factor by mitogenactivated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/#x03B2-catenin signaling. Mol Cell Biol 23:1379–1389.

    PubMed  Google Scholar 

  95. J. Deng, S. A. Miller, H. Y. Wang, W. Xia, Y. Wen, B. P. Zhou, et al. (2002). #x03B2-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2:323–334.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Cowin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatsell, S., Rowlands, T., Hiremath, M. et al. β-Catenin and Tcfs in Mammary Development and Cancer. J Mammary Gland Biol Neoplasia 8, 145–158 (2003). https://doi.org/10.1023/A:1025944723047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025944723047

Navigation