Skip to main content
Log in

Role of Homeobox Genes in Normal Mammary Gland Development and Breast Tumorigenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The role of homeobox-containing genes in embryogenesis and organogenesis is well documented. Also, a sizeable body of evidence has accumulated and supports the fact that homeobox genes, when dysregulated, are involved in tumorigenesis. However, the precise mechanisms of homeobox gene functions are largely unknown. The mammary gland, in which most maturation occurs postnatally, provides an ideal model for studying the functions of homeobox genes in both development and tumorigenesis. The expression of many homeobox genes has been detected in both normal mammary gland and neoplastic breast tissues. In the normal mammary gland, the expression of homeobox genes is coordinately regulated by hormone and extracellular matrix (ECM) and other unknown factors in a spatial and temporal manner in both stromal and epithelial cells. Animals with misexpressed homeobox genes displayed different extents of defects in ductal proliferation, side branching, and alveoli formation, implying that homeobox genes are important for normal mammary gland development. Recent studies of homeobox genes in breast cancer cells and primary tumors indicate that they may also play a contributory or causal role in tumorigenesis by regulating the cell cycle, apoptosis, angiogenesis, and/or metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Krumlauf (1994). Hox genes in vertebrate development. Cell 70:191–201.

    Google Scholar 

  2. E. B. Lewis (1978). A gene complex controlling segmentation in Drosophila. Nature 276:565–570.

    PubMed  Google Scholar 

  3. A. Chariot, J. Gielen, M. P. Merville, and V. Bours (1999). The homeodomain-containing proteins: An update on their interacting partners. Biochem. Pharmacol. 58:1851–1857.

    PubMed  Google Scholar 

  4. R. S. Mann and M. Affolter (1998). Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8:423–429.

    PubMed  Google Scholar 

  5. R. Tupler, G. Perini, and M. R. Green (2001). Expressing the human genome. Nature 409:832–833.

    PubMed  Google Scholar 

  6. S. Stein, R. Fritsch, L. Lemaire, and M. Kessel (1996). Checklist: Vertebrate homeobox genes. Mech. Dev. 55:91–108.

    PubMed  Google Scholar 

  7. D. Duboule (1994). Guidebook to the Homeobox Genes. Oxford Press, Oxford University.

  8. M. Maconochie, S. Nonchev, A. Morrison, and R. Krumlauf (1996). Paralogous hox genes: Function and regulation. Annu. Rev. Genet. 30:529–556.

    PubMed  Google Scholar 

  9. D. Duboule and G. Morata (1994). Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 10:358–364.

    PubMed  Google Scholar 

  10. J. Van Oostveen, J. Bijl, F. Raaphorst, J. Walboomers, and C. Meijer (1999). The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 13:1675–1690.

    PubMed  Google Scholar 

  11. J. Aubin, M. Lemieux, M. Tremblay, J. Berard, and L. Jeannotte (1997). Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev. Biol. 192:432–445.

    PubMed  Google Scholar 

  12. A. Garcia-Gasca and D. D. Spyropoulos (2000). Differential mammary morphogenesis along the anteroposterior axis in Hox c6 gene targeted mice. Dev. Dyn. 219:261–276.

    PubMed  Google Scholar 

  13. C. Cillo, A. Faiella, M. Cantile, and E. Boncinelli (1999). Homeobox genes and cancer. Exp. Cell. Res. 248:1–9.

    PubMed  Google Scholar 

  14. C. Abate-Shen (2002). Deregulated homeobox gene expression in cancer: Cause or consequence? Nat. Rev. Cancer. 2:777–785.

    PubMed  Google Scholar 

  15. H. J. Lawrence, G. Sauvageau, R. K. Humphries, and C. Largman (1996). The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem. Cells 14:281–291.

    PubMed  Google Scholar 

  16. T. Kawabe, A. J. Muslin, and S. J. Korsmeyer (1997). HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385:454–458.

    PubMed  Google Scholar 

  17. M. Hatano, C. W. Roberts, M. Minden, W. M. Crist, and S. J. Korsmeyer (1991). Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253:79–82.

    PubMed  Google Scholar 

  18. C. C. Maulbecker and P. Gruss (1993). The oncogenic potential of deregulated homeobox genes. Cell. Growth. Diff. 4:431–441.

    PubMed  Google Scholar 

  19. G. M. Edelman and F. S. Jones (1993). Outside and downstream of the homeobox. J. Biol. Chem. 268:20683–20686.

    PubMed  Google Scholar 

  20. C. Cillo (1994–95). HOX genes in human cancers. Invasion Metastasis. 14:38–49.

    PubMed  Google Scholar 

  21. M. T. Lewis (2000). Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res. 2:158–169.

    PubMed  Google Scholar 

  22. M. C. Neville, C. W. Daniel, (eds). The Mammary Gland Development, Regulation and Function. Plenum, New York, 1987.

    Google Scholar 

  23. Y. Friedmann, C. A. Daniel, P. Strickland, and C. W. Daniel (1994). Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 54:5981–5985.

    PubMed  Google Scholar 

  24. X. Zhang, T. Zhu, Y. Chen, H. C. Mertani, K. O. Lee, and P. E. Lobie (2003). Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J. Biol. Chem. 278:7580–7590.

    PubMed  Google Scholar 

  25. A. Srebrow, Y. Friedmann, A. Ravanpany, C. W. Daniel, and M. J. Bissel (1998). Expression of HoxA1 and HoxB7 is regulated by extracellular matrix-dependent signals in mammary epithelial cells. J. Cell Biochem. 69:377–391.

    PubMed  Google Scholar 

  26. F. Chen and M. R. Capecchi (1999). Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Dev. Biol. 96:541–546.

    Google Scholar 

  27. Y. Friedmann and C. W. Daniel (1996). Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelialstromal interactions. Dev. Biol. 177:347–355.

    PubMed  Google Scholar 

  28. D. J. Phippard, S. J. Weber-Hall, P. T. Sharpe, M. S. Naylor, H. Jayatalake, R. Maas, I. Woo, D. Roberts-Clark, P. H. Francis-West, Y. H. Liu, R. Maxson, R. E. Hill, and T. C. Dale (1996). Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 122:2729–2737.

    PubMed  Google Scholar 

  29. B. Jehn, G. Chicaiza, F. Martin, and R. Jaggi (1994). Isolation of three novel pou-domain containing cDNA clones from lactating mouse mammary gland. Biochem. Biophys. Res. Commun. 200:156–162.

    PubMed  Google Scholar 

  30. M. I. Morasso, K. A. Mahon, T. D. Sargent (1995). A Xenopus distal-less gene in transgenic mice: Conserved regulation in distal limb epidermis and other sites of epithelial-mesenchymal interaction. Proc. Natl. Acad. Sci. U. S. A. 92:3968–3972.

    PubMed  Google Scholar 

  31. R. Hudson, A. Taniguchi-Sidle, K. Boras, O. Wiggan, P. A. Hamel (1998). Alx-4, a transcriptional activator whose expression is restricted to sites of epithelial-mesenchymal interactions. Dev. Dyn. 213:159–169.

    PubMed  Google Scholar 

  32. A. Chariot, S. Senterre-Lesenfants, M. E. Sobel, and V. Castronovo (1998). Molecular cloning of a mutated HOXB7 cDNA encoding a truncated transactivating himeodomaincontaining protien. J. Cell Biochem. 71:46–54.

    PubMed  Google Scholar 

  33. W. F. Odenwald, J. Garbern, H. Arnheiter, E. Tournier-Lasserve, and R. A. Lazzarini (1989). The Hox-1.3 homeo box protein is a sequence-specific DNA-binding phosphoprotein. Genes Dev. 3:158–172.

    PubMed  Google Scholar 

  34. V. Raman, S. A. Martensen, D. Reisman, E. Evron, W. F. Odenwald, E. Jaffee, J. Marks, and S. Sukumar (2000). CompromisedHOXA5 function can limit p53 expression in human breast tumors. Nature 405:974–978.

    PubMed  Google Scholar 

  35. M. T. Lewis, S. Ross, P. A. Strickland, C. J. Snyder, and C. W. Daniel (1999). Regulated expression patterns of IRX-2, an Iroquois-class homeobox gene, in the human breast. Cell Tissue Res. 296:549–554.

    PubMed  Google Scholar 

  36. A. Krasner, L. Wallace, A. Thiagalingam, C. Jones, C. Lengauer, L. Minahan, Y. Ma, L. Kalikin, A. P. Feinberg, E. W. Jabs, A. Tunnacliffe, S. B. Baylin, D. W. Ball, and B. D. Nelkin (2000). Cloning and chromosomal localization of the human BARX2 homeobox protein gene. Gene 250:171–180.

    PubMed  Google Scholar 

  37. C. Geserick, B. Weiss, W. D. Schleuning, B. Haendler (2002). OTEX, an androgen-regulated human member of the pairedlike class of homeobox genes. Biochem. J. 366:367–375.

    PubMed  Google Scholar 

  38. G. B. Silberstein, G. R. Dressler, K. Van Horn (2002). Expression of the PAX2 oncogene in human breast cancer and its role in progesterone-dependent mammary growth. Oncogene 21:1009–1016.

    PubMed  Google Scholar 

  39. J. C. Adams and F. M. Watt (1993). Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198.

    PubMed  Google Scholar 

  40. M. Martins-Greenf and M. J. Bissell (1995). Cell-extracellular matrix interactions in development. Semin. Dev. 6:149–159.

    Google Scholar 

  41. W. Balesmans and W. Van Hul (2002). Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators. Dev. Biol. 250:231–250.

    PubMed  Google Scholar 

  42. S. Vainio, I. Karavanova, A. Jowett, and I. Thesleff (1993). Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75:45–58.

    PubMed  Google Scholar 

  43. N. R. Dunn, G. E. Winnier, L. K. Hargett, J. J. Schrick, A. B. Fogo, and B. L. Hogan (1997). Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev. Biol. 188:235–247.

    PubMed  Google Scholar 

  44. F. R. Goodman and P. J. Scambler (2001). Human HOX gene mutations. Clin. Genet. 59:1–11.

    PubMed  Google Scholar 

  45. G. Hu, H. Lee, S. M. Price, M. M. Shen, and C. Abate-Shen (2001). Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128:2373–2384.

    PubMed  Google Scholar 

  46. I. Satokata, L. Ma, H. Ohshima, M. Bei, I. Woo, K. Nishizawa, T. Maeda, Y. Takano, M. Uchiyama, S. Heaney, H. Peters, Z. Tang, R. Maxson, and R. Maas (2000). Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat. Genet. 24:391–395.

    PubMed  Google Scholar 

  47. I. Satokata and R. Maas (1994). Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet. 6:348–356.

    PubMed  Google Scholar 

  48. W. McGinnis and R. Krumlauff (1992). Homeobox genes and axial patterning. Cell 68:283–302.

    PubMed  Google Scholar 

  49. F. F. Bolander (1990). Differential characteristics of the thoracic and abdominal mammary glands from mice. Exp. Cell. Res. 189:142–144.

    PubMed  Google Scholar 

  50. T. Kamalati, B. Niranjan, J. Yant, and L. Buluwela (1999). HGF/SF in mammary epithelial growth and morphogenesis: In vitro and in vivo models. J. Mammary Gland Biol. Neoplasia 4:69–77.

    PubMed  Google Scholar 

  51. J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery, G. ShyamalaJr., O. M. Conneely, and B. W. O'Malley (1995). Mice lacking progesterone receptor exihibit pleiotropic reproductive abnormalities. Genes Dev. 9:2266–2278.

    PubMed  Google Scholar 

  52. V. Raman, A. Tamori, M. Vali, K. Zeller, D. Korz, and S. Sukumar (2000). HOXA5 regulates expression of the progesterone receptor. J. Biol. Chem. 275:26551–26555.

    PubMed  Google Scholar 

  53. W. P. Bocchinfuso and K. S. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia 2:323–334.

    PubMed  Google Scholar 

  54. W. P. Bocchinfuso, J. K. Lindzey, S. C. Hewitt, J. A. Clark, P. H. Myers, R. Cooper, and K. S. Korach (2000). Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology 141:2982–2994.

    PubMed  Google Scholar 

  55. D. Duboule (2000). Developmental genetics. A Hox by any other name. Nature 403:609–610.

    Google Scholar 

  56. J. M. Greer, J. Puetz, K. R. Thomas, and M. R. Capecchi (2000). Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403:661–665.

    PubMed  Google Scholar 

  57. J. Zakany, C. Fromental-Ramain, X. Warot, and D. Duboule (1997). Regulation of number and size of digits by posterior Hox genes: A dose-dependent mechanism with potential evolutionary implications. Proc. Natl. Acad. Sci. U. S. A. 94:13695–13700.

    PubMed  Google Scholar 

  58. A. Chariot and V. Castronovo (1996). Detection ofHOXA1expression in human breast cancer. Biochem. Biophys. Res. Commun. 222:292–297.

    PubMed  Google Scholar 

  59. A. Chariot, V. Castronovo, P. Le, C. Gillet, M. E. Sobel, and J. Gielen (1996). Cloning and expression of a new HOXC6 transcript encoding a repressing protein. Biochem. J. 319:91–97.

    PubMed  Google Scholar 

  60. B. Bodey, B. Bodey, Jr, A. M. Groger, S. E. Siegel, and H. E. Kaiser (2000). Immunocytochemical detection of homeobox B3, B4, and C6 gene product expression in lung carcinomas. Anticancer. Res. 20:2711–2716.

    PubMed  Google Scholar 

  61. H. L. Ford, E. N. Kabingu, E. A. Bump, G. L. Mutter, and A. B. Pardee (1998). Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: A possible mechanism of breast carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 95:12608–12613.

    PubMed  Google Scholar 

  62. T. Jin, D. R. Branch, X. Zhang, S. Qi, B. Youngson, and P. E. Goss (1999). Examination of POU homeobox gene expression in human breast cancer cells. Int. J. Cancer 81:104–112.

    PubMed  Google Scholar 

  63. V. Budhram-Mahadeo, D. Ndisang, T. Ward, B. L. Weber, and D. S. Latchman (1999). The Brn-3b POU family transcription factor represses expression of the BRCA-1 anti-oncogene in breast cancer cells. Oncogene 18:6684–6691

    PubMed  Google Scholar 

  64. J. H. Dennis, V. Budhram-Mahadeo, and D. S. Latchman (2001). The Brn-3b POU family transcription factor regulates the cellular growth, proliferation, and anchorage dependence of MCF7 human breast cancer cells. Oncogene 20:4961–4971.

    PubMed  Google Scholar 

  65. B. Goulet, P. Watson, M. Poirier, L. Leduy, G. Berube, S. Meterissian, P. Jolicoeur, and A. Nepveu (2002). Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells. Cancer Res. 62:6625–6633.

    PubMed  Google Scholar 

  66. T. Jacks and R. A. Weinberg (1998). The expanding role of cell cycle regulators. Science 280:1035–1036.

    PubMed  Google Scholar 

  67. H. L. Ford (1998). Homeobox genes: A link between development, cell cycle, and cancer? Cell Biol. Int. 22:397–400.

    PubMed  Google Scholar 

  68. R. C. Smith, D. Branellec, D. H. Gorski, K. Guo, H. Perlman, J. F. Dedieu, C. Pastore, A. Mahfoudi, P. Denefle, J. M. Isner, and K. Walsh (1997). p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev. 11:1674–1689.

    PubMed  Google Scholar 

  69. M. R. Hough, M. D. Reis, R. Singaraja, D. M. Bryce, S. Kamel-Reid, I. Dardick, M. L. Breitman, I. D. Dube (1998). A model for spontaneous B-lineage lymphomas in IgHmu-HOX11 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 95:13853–13858.

    PubMed  Google Scholar 

  70. N. Y. Rots, M. Liu, E. C. Anderson, and L. P. Freedman (1998). A differential screen for ligand-regulated genes: Identification of HoxA10 as a target of vitamin D3 induction in myeloid leukemic cells. Mol. Cell Biol. 18:1911–1918.

    PubMed  Google Scholar 

  71. A. Nepveu (2001). Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 270:1–15.

    PubMed  Google Scholar 

  72. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.

    PubMed  Google Scholar 

  73. S. Boulon, J. C. Dantonel, V. Binet, A. Vie, J. M. Blanchard, R. A. Hipskind, and A. Philips (2002). Oct-1 potentiates CREBdriven cyclin D1 promoter activation via a phospho-CREBand CREB binding protein-independent mechanism. Mol. Cell Biol. 22:7769–7779.

    PubMed  Google Scholar 

  74. X. F. Qin, Y. Luo, H. Suh, J. Wayne, Z. Misulovin, R. G. Roeder, and M. C. Nussenzweig (1994). Transformation by homeobox genes can be mediated by selective transcriptional repression. EMBO J. 13:5967–5976.

    PubMed  Google Scholar 

  75. W. Risau (1997). Mechanisms of angiogenesis. Nature 386:671–674.

    PubMed  Google Scholar 

  76. D. Hanahan and J. Folkman (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364.

    PubMed  Google Scholar 

  77. P. Carmeliet and R. K. Jain (2000). Angiogenesis in cancer and other diseases. Nature 407:249–257.

    PubMed  Google Scholar 

  78. A. Care, A. Silvani, E. Meccia, G. Mattia, A. Stoppacciaro, G. Parmiani, C. Peschle, and M. P. Colombo (1996). HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol. Cell Biol. 16:4842–4851.

    PubMed  Google Scholar 

  79. A. Care, F. Felicetti, E. Meccia, L. Bottero, M. Parenza, A. Stoppacciaro, C. Peschle, and M. P. Colomb (2001). HOXB7: A key factor for tumor-associated angiogenic switch. Cancer Res. 61:6532–6539.

    PubMed  Google Scholar 

  80. A. Carè, A. Silvani, E. Meccia, G. Mattia, C. Peschle, M. P. Colombo (1998). Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene 16:3285–3289.

    PubMed  Google Scholar 

  81. A. J. Hayes, W. Q. Huang, J. Yu, P. C. Maisonpierre, A. Liu, F. G. Kern, M. E. Lippman, S. W. McLeskey, and L. Y. Li (2000). Expression and function of angiopoietin-1 in breast cancer. Br. J. Cancer 83:1154–1160.

    PubMed  Google Scholar 

  82. V. Budhram-Mahadeo, M. Parker, and D. S. Latchman (1998). POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol. Cell Biol. 18:1029–1041

    PubMed  Google Scholar 

  83. J. F. Couse and K. S. Korach (1999). Estrogen receptor null mice: What havewelearned and where will they lead us? Endocr. Rev. 20:358–417.

    PubMed  Google Scholar 

  84. G. I. Evan and K. H. Vousden (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348.

    PubMed  Google Scholar 

  85. M. T. Debies and D. R. Welch (2001). Genetic basis of human breast cancer metastasis. J. Mammary Gland Biol. Neoplasia 6:441–451.

    PubMed  Google Scholar 

  86. D. M. Loeb and S. Sukumar (2002). The role of WT1 in oncogenesis: Tumor suppressor or oncogene? Int. J. Hematol. 76:117–126.

    PubMed  Google Scholar 

  87. M. Akam (1998). Hox genes: From master genes to micromanagers. Curr. Biol. 8:R676-R678.

    PubMed  Google Scholar 

  88. A. Chariot, C. van Lint, M. Chapelier, J. Gielen, M. P. Merville, and V. Bours (1999). CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene 18:4007–1014.

    PubMed  Google Scholar 

  89. J. B. Gibbs (2000). Mechanism-based target identification and drug discovery in cancer research. Science 287:1969–1973.

    PubMed  Google Scholar 

  90. M. Windschwendter and P. A. Jones (2002). DNA methylation and breast carcinogenesis. Onocogene 21:5462–5482.

    Google Scholar 

  91. G. R. Cunha, P. Young, Y. K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J. Mammary Gland Biol. Neoplasia 2:393–402.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraswati Sukumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Sukumar, S. Role of Homeobox Genes in Normal Mammary Gland Development and Breast Tumorigenesis. J Mammary Gland Biol Neoplasia 8, 159–175 (2003). https://doi.org/10.1023/A:1025996707117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025996707117

Navigation