Skip to main content
Log in

Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of ∼5 × 106 cells mL-1. Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell-1 day-1. Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized (∼40 mg L-1) at 0.2 nL cell-1 day-1. The volumetric protein productivity (∼60 mg L-1 day-1 was maximized above 0.3 nL cell-1 day-1. The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cerckel I, Garcia A, Degouys V, Dubois D, Fabry L. and Miller AOA (1993) 'Dielectric spectroscopy of mammalian cells 1. Evaluation of the biomass of HeLa-and CHO cells in suspension by low-frequency dielectric spectroscopy', Cytotechnology 13: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Cohen SA and Strydom DJ (1988) 'Amino acid analysis using phenylisothiocyanate derivatives', Anal Biochem 174: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Degouys V, Cerckel I, Garcia A, Harfield J, Dubois D, Fabry L and Miller AOA (1993) 'Dielectric spectroscopy of mammalian cells 2. Simultaneous in situ evaluation by aperture inpedance pulse spectroscopy and low-frequency dielectric spectroscopy of the biomass of HTC cells on Cytodex 3', Cytotechnology 13: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Dowd JE, Kwok KE and Piret JM (2000) 'Increased t-PA yields using ultrafiltration of product from CHO fed-batch culture', Biotechnol Prog 16: 786–794.

    Article  PubMed  CAS  Google Scholar 

  • Dowd JE, Kwok KE and Piret JM (2001) 'Glucose-based optimization of CHO cell perfusion culture', Biotechnol Bioeng 75: 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Dowd JE, Weber I, Rodriguez B, Piret JM and Kwok KE (1999) 'Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies', Biotechnol Bioeng 63: 484–492.

    Article  PubMed  CAS  Google Scholar 

  • Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, Von Stockar U and Marison IW (2001) 'On-line determination of animal cell concentration', Biotechnol Bioeng 72: 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Ducommun P, Kadouri A, Von Stockar U and Marison IW (2002) 'On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy', Biotechnol Bioeng 77: 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Fann CH, Guirgis F, Chen G, Lao MS and Piret JM (2000) 'Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese Hamster Ovary cells', Biotechnol Bioeng 69: 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach R, Comberbach M and Pêtre JO (1992) 'On-line biomass monitoring by capacitance measurement', J Biotech 23: 303–314.

    Article  CAS  Google Scholar 

  • Guan Y, Evans PM and Kemp RB (1998) 'Specific heat flow rate: An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy', Biotechnol Bioeng 58: 87–94.

    Article  Google Scholar 

  • Guan YH and Kemp RB (1998) 'On-line heat flux measurements improve the culture medium for the growth and productivity of genetically engineered CHO cells', Cytotechnology 30: 107–120.

    Article  Google Scholar 

  • Hagen SR, Augustin J, Grings E and Tassinari P (1993) 'Precolumn phenylisothiocyanate derivatization and liquid chromatography of free amino acids in biological samples', Food Chem 46: 319–323.

    Article  CAS  Google Scholar 

  • Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG and Kell DB (1987) 'The dielectric permittivity of microbial suspensions at radio frequencies; A novel method for the real-time estimation of microbial biomass', Enzyme Microb Technol 9: 181–186.

    Article  CAS  Google Scholar 

  • Heidemann R, Zhang C, Qi H, Rule, JL, Rozales C, Sinyoung P, Chuppa S, Ray M, Michaels J, Konstantinov K and Naveh D (2000) 'The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells', Cytotechnology 32: 157–167.

    Article  CAS  Google Scholar 

  • Hiller G, Clark D and Blanch H (1993) 'Cell retention chemostat studies of hybridoma cells. Analysis of hybridoma growth and metabolism in continuous suspension culture on serum free medium', Biotechnol Bioeng 42: 185–195.

    Article  CAS  Google Scholar 

  • Konstantinov K, Chuppa S, Sajan E, Tsai Y, Yoon S and Golini F (1994) 'Real-time biomass-concentration monitoring in animal cell cultures', Trends Biotech 12: 324–333.

    Article  CAS  Google Scholar 

  • Konstantinov KB, Pambayun R, Matanguihan R, Yoshida T, Perusich CM and Hu W-S (1992) 'On-line monitoring of hybridoma cell growth using a laser turbidity sensor', Biotechnol Bioeng 40: 1337–1342.

    Article  CAS  Google Scholar 

  • Konstantinov KB, Tsai Y-S, Moles D and Matanguihan R (1996) 'Control of long-term perfusion Chinese Hamster Ovary cell culture by glucose auxostat', Biotechnol Prog 12: 102–109.

    Article  Google Scholar 

  • Kurkela R, Fraune E and Vihko P (1993) 'Pilot-scale production of murine monoclonal antibodies in agitated, ceramic-matrix or hollow-fiber cell culture systems', BioTechniques 15: 674–683.

    PubMed  CAS  Google Scholar 

  • Kyung Y-S, Peshwa MV, Gryte DM and Hu W-S (1994) 'High density culture of mammalian cells with dynamic perfusion based on on-line uptake rate measurements', Cytotechnology 14: 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Markx GH, Davey CL, Kell DB and Morris P (1991) 'The dielectric permittivity at radio frequencies and the Bruggeman probe: Novel techniques for the on-line determination of biomass concentrations in plant cell cultures', J Biotech 20: 279–290.

    Article  CAS  Google Scholar 

  • Maruhashi F, Murakami S and Baba K (1994) 'Automated monitoring of cell concentration and viability using an image analysis system', Cytotechnology 15: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Merten OW(2000) Constructive improvement of the ultrasonic separation device ADI 1015. 16th ESACT, Lugano, Switzerland, Cytotechnology 24: 175–179.

    Article  Google Scholar 

  • Merten OW, Palfi GE, Staheli J and Steiner J (1985) 'Invasive infrared sensor for the determination of the cell number in a continuous fermentation of hybridomas', Devel Biol Stand 66: 357–360.

    Google Scholar 

  • Miller WM, Blanch HW and Wilke CR (1988) 'A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate and pH', Biotechnol Bioeng 32: 947–965.

    Article  CAS  Google Scholar 

  • Ozturk S, Thrift J, Blackie J and Naveh D (1997) 'Real time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor', Biotechnol Bioeng 53: 372–378.

    Article  CAS  Google Scholar 

  • Pelletier F, Fonteix C, De Silva AL, Marc A and Engasser JM (1994) 'Software sensors for the monitoring of perfusion cultures: Evaluation of the hybridoma density and the medium composition from glucose concentration measurements', Cytotechnology 15: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Sonderhoff SA, Kilburn DG and Piret JM (1992) 'Analysis of mammalian viable cell biomass based on cellular ATP', Biotechnol Bioeng 39: 859–864.

    Article  CAS  Google Scholar 

  • Van der Pol JJ, Joksch B, Gätgens J, Biselli M, De Gooijer CD, Tramper J and Wandrey C (1995) 'On-line control of an immobilized hybridoma culture with multi-channel flow injection analysis', J Biotechnol 43: 229–242.

    Article  PubMed  CAS  Google Scholar 

  • Vits H and Hu W-S (1992) 'Fluctuations in continuous mammalian cell bioreactors with retention', Biotechnol Prog 8: 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ozturk S, Blackie JD, Thrift JC, Figueroa C and Naveh D (1995) 'Evaluation and applications of optical cell density probes in mammalian cell bioreactors', Biotechnol Bioeng 45: 495–502.

    Article  CAS  Google Scholar 

  • Zhou W and Hu WS (1994) 'On line characterization of a hybridoma cell culture process', Biotechnol Bioeng 44: 170–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Piret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowd, J.E., Jubb, A., Kwok, K.E. et al. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42, 35–45 (2003). https://doi.org/10.1023/A:1026192228471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026192228471

Navigation