Skip to main content
Log in

Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale

  • Published:
Journal of Structural and Functional Genomics

Abstract

Structural genomics requires the application of a standardised process for overexpression of soluble proteins that allows high-throughput purification and analysis of protein products. We have developed a highly parallel approach to protein expression, including the simultaneous expression screening of a large number of cDNA clones in an appropriate vector system and the use of a protease-deficient host strain. A set of 221 human genes coding for proteins of various sizes with unknown structures was selected to evaluate the system. We transferred the cDNAs from an E. coli vector to the yeast expression vector by recombinational cloning, avoiding time-consuming recloning steps and the use of restriction enzymes in the cloning process. The subcloning yield was 95%, provided that a PCR fragment of the correct size could be obtained. Sixty percent of these proteins were expressed as soluble products at detectable levels and 48% were successfully purified under native conditions using the His6 tag fusion.

The advantages of the developed yeast-based expression system are the ease of manipulation and cultivation of S. cerevisiae in the same way as with prokaryotic hosts and the ability to introduce post-translational modifications of proteins if required, thus being an attractive system for heterologous expression of mammalian proteins. The expression clones selected in this screening process are passed on to the fermentation process in order to provide milligram amounts of proteins for structure analysis within the ‘Berlin Protein Structure Factory’. All data generated is stored in a relational database and is available on our website(http://www.proteinstrukturfabrik.de).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Nucleic Acids Res. 25, 3389–3402.

    Google Scholar 

  • Baneyx, F. (1999) Curr. Opin. Biotechnol. 10, 411–421.

    Google Scholar 

  • Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A. and Wheeler, D.L. (2002) Nucleic Acids Res. 30, 17–20.

    Google Scholar 

  • Boettner, M., Brinz, B., Holz, C., Stahl, U. and Lang, C. (2002) J. Biotechnol. 99, 51–62.

    Google Scholar 

  • Braun, P., Hu, Y., Shen, B., Hallek, A., Koundinya, M., Harlow, E. and LaBaer, J. (2002) Proc. Natl. Acad. Sci. USA 99, 2654–2659.

    Google Scholar 

  • Bucher, M.H., Evdokimov, A.G. and Waugh, D.S. (2002) Acta Cryst. 58, 392–397.

    Google Scholar 

  • Büssow, K., Nordhoff, E., Lübbert, C., Lehrach, H. and Walter, G. (2000) Genomics 65, 1–8.

    Google Scholar 

  • Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D.J., Morris, M.S. and Fodor, S.P. (1996) Science 274, 610–614.

    Google Scholar 

  • Cserzo, M., Wallin, E., Simon, I., von Heijne, G. and Elofsson, A. (1997) Protein Eng. 10, 673–676.

    Google Scholar 

  • Fusco, C., Guidotti, E. and Zervos, A.S. (1999) Yeast 15, 715–720.

    Google Scholar 

  • DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y.A. and Trent, J.M. (1996) Nat. Genet. 14, 457–460.

    Google Scholar 

  • Dove, A. (1999) Nat. Biotechnol. 17, 233–236.

    Google Scholar 

  • Dukan, S., Turlin, E., Biville, F., Bolbach, G., Touati, D., Tabet, J.C. and Blais, J.C. (1998) Anal. Chem. 70, 4433–4440.

    Google Scholar 

  • Gietz, D., St. Jean, A., Woods, R.A. and Schiestl, R.H. (1992) Nucleic Acids Res. 20, 1425.

    Google Scholar 

  • Guengerich, F.P., Gillam, E.M.J., Ohmori, S., Sandhu, P., Brian, W.R., Sari, M.-A. and Iwasaki, M. (1993) Toxicology 82, 21–37.

    Google Scholar 

  • Güldner, U., Heck, S., Fiedler, T., Beinhauer, J. and Hegemann, J.H. (1996) Nucleic Acids Res. 24, 2519–2524.

    Google Scholar 

  • Hammerström, M., Hellgren, N., van den Berg, S., Berglund, H. and Härd, T. (2002) Protein Science 11, 313–321.

    Google Scholar 

  • Harashima, S. (1994) Bioprocess Technol. 19, 137–158.

    Google Scholar 

  • Hartley, J.L., Temple, G.F. and Brasch, M.A. (2000) Genome Res. 10, 1788–1795.

    Google Scholar 

  • Holm, L. and Sander, C. (1998) Bioinformatics 14, 423–429.

    Google Scholar 

  • Holz, C., Hesse, O., Bolotina, N., Stahl, U. and Lang, C. (2002) Protein Exp. Purif. 25, 372–378.

    Google Scholar 

  • Hua, S., Luo, Y., Qui, M., Chan, E., Zhou, H. and Zhu, L. (1998) Gene 215, 143–152.

    Google Scholar 

  • Jones, E.W. (1990) Methods Enzymol. 185, 372–386.

    Google Scholar 

  • Kane, J.F. (1995) Curr. Opin. Biotechnol. 6, 494–500.

    Google Scholar 

  • Klose, J. and Kobalz, U. (1995) Electrophoresis 16, 1034–1059.

    Google Scholar 

  • Laemmli, U.K. (1970) Nature 227, 680–685.

    Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitz-Hugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., et al. (2001) Nature 409, 860–921

    Google Scholar 

  • Lueking, A., Holz, C., Gotthold, C., Lehrach, H. and Cahill, D. (2000) Protein Exp. Purif. 20, 372–378.

    Google Scholar 

  • Lupas, A., Van Dyke, M. and Stock J. (1991) Science 252, 1162–1164.

    Google Scholar 

  • Makrides, S.C. (1996) Microbiol. Rev. 60, 512–538.

    Google Scholar 

  • Mueller, U., Buessow, K., Diehl, A., Bartl, F.J., Niesen, F., Nyarsik, L. and Heinemann, U. (2002) submitted.

  • Murby, M., Uhlén, M. and Stahl, S. (1996) Protein Exp. Purif. 7, 129–136.

    Google Scholar 

  • A. (1997) Protein Exp. Purif. 11, 1–16.

    Google Scholar 

  • Ramesh, V., De, A. and Nagaraja, V. (1994) Protein Eng. 7, 1053–1057.

    Google Scholar 

  • Raymond, C.K., Pownder, T.A. and Sexson S.L. (1999) Biotechniques 26, 134–138.

    Google Scholar 

  • Ross, J. (1995) Microbiol. Rev. 59, 423–450.

    Google Scholar 

  • Rupp, S. and Wolf, D.H. (1995) Eur. J. Biochem. 231, 115–125.

    Google Scholar 

  • Shena, M., Shalon, D., Davis, R.W. and Brown, P.R. (1995) Science 270, 467–470.

    Google Scholar 

  • Smith, D.B. (2000) Methods Enzymol. 326, 312–321.

    Google Scholar 

  • Stevens, R.C. (2000) Structure 8, 177–185.

    Google Scholar 

  • van den Hazel, H., Kielland-Brandt, M.C. and Winther, J.R. (1995) J. Biol. Chem. 270, 8602–8609.

    Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001) Science 291, 1304–1351

    Google Scholar 

  • Westphal, V., Marcusson, E.G., Winther, J.R. and Emr, S.(1996) J. Biol. Chem. 271, 11865–11870.

    Google Scholar 

  • Wickner, S., Maurizi, M.R. and Gottesman, S. (1999) Science 286, 1888–1893.

    Google Scholar 

  • Woolford, C.A., Daniels, L.B., Park, F.J., Jones, E.W., Van Arsdell, J.N. and Innis, M.A. (1986) Mol. Cell. Biol. 6, 2500–2510.

    Google Scholar 

  • Woolford, C.A., Noble, J.A., Garman, J.D., Tam, M.F., Innis, M.A. and Jones, E.W. (1993) J. Biol. Chem. 268, 8990–8998.

    Google Scholar 

  • Wootton, J.C. and Federhen, S. (1996) Methods Enzymol. 266, 554–571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holz, C., Prinz, B., Bolotina, N. et al. Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J Struct Func Genom 4, 97–108 (2003). https://doi.org/10.1023/A:1026226429429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026226429429

Navigation