Skip to main content
Log in

Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The siderophore produced by Erwinia amylovora, the causal agent of fire blight of Maloideae, is one of the virulence factors of this bacterium. The production of siderophores enables E. amylovora to overcome the conditions of iron limitation met in plant tissue, and may also protect the bacteria against active oxygen species produced through the Fenton reaction. In this paper, we have examined the ability of an iron chelator protein, encoded by the bovine lactoferrin gene, to reduce fire blight susceptibility in pear (Pyrus communis L.). Transgenic pear clones expressing this gene controlled by the CaMV35S promoter were produced by Agrobacterium tumefaciens mediated transformation. Transformants were analysed by RT-PCR and western blot to determine lactoferrin expression levels. Most transgenic clones demonstrated significant reduction of susceptibility to fire blight in vitro and in the greenhouse when inoculated by E. amylovora. These transgenic clones also showed a significant reduction of symptoms when inoculated with two other pear bacterial pathogens : Pseudomonas syringae pv. syringae and Agrobacterium tumefaciens. Moreover, we have shown that this increase in bacterial resistance was correlated with an increase in root ferric reductase level activity and leaf iron content. Despite negative effects on the growth of a few clones, our results indicate the potential of lactoferrin gene transformation to protect pear from fire blight through increased iron chelation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bellamy W., Takase M., Wakabayashi H., Kawase K. and Tomita M.1992a. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin.J. Appl. Bacteriol73: 472–479.

    Google Scholar 

  • Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K. and Tomita M.1992b. Identification of the bactericidal domain of lactoferrin.Biochim. Biophys. Acta1121: 130–136.

    Google Scholar 

  • Borther C.A., Arnold R.R. and Miller R.D.1989. Bactericidal effect of lactoferrin on Legionella pneumophilia: effect of the physiological state of the organism.Can. J. Microbiol.35: 1048–1051.

    Google Scholar 

  • Bradford M.M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem.72: 248–254.

    Google Scholar 

  • Brennan C.M. and Steitz J.A.2001. HuR and mRNA stability.Cell. Mol. Life Sci.58: 266–277.

    Google Scholar 

  • Brisset M.N., Paulin J.P. and Duron M.1988. Feasibility of rating fire blight susceptibility of pear cultivars (Pyrus communis) on in vitro microcuttings.Agronomie8: 707–710.

    Google Scholar 

  • Brown S.C., Bergounioux C., Tallet S. and Marie D. 1991. Flow cytometry of nuclei for ploidy and cell cycle analysis. In: Negrutiu I. and Gharti-Chetri G.B. (eds), Biomethods, Vol. 4. A Laboratory Guide for Cellular and Molecular Plant Biology.Birkhaeuser Verlag, Basel, pp. 326–345.

    Google Scholar 

  • Chong D.K.X. and Langridge W.H.R.2000. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants.Transgenic Res.9: 71–78.

    Google Scholar 

  • Deak M., Harvath G.V., Davletova S., Török K., Sass L., Vass I., Barna B., Kiraly Z. and Dudits D.1999. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens.Nature Biotech.17: 192–196.

    Google Scholar 

  • De Bondt A., Eggermont K., Penninckx I., Goderis I. and Broekaert W.F.1996. Agrobacterium-mediated transformation of apple (Malusx domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants.Plant Cell. Rep.15: 549–554.

    Google Scholar 

  • Dellagi A., Brisset M.N., Paulin J.P. and Expert D.1998. Dual role of desferrioxamine in Erwinia amylovora pathogenicity.Mol. Plant-Microbe Interact.11: 734–742.

    Google Scholar 

  • Ellison R.T., Laforce F.M., Giehl T.J., Boose D.S. and Dunn B.E.1990. Lactoferrin and transferrin damage of the gram-negative outer membrane is modulated by Ca2+ and Mg2+.J. Gen. Microbiol.136: 1437–1446.

    Google Scholar 

  • Expert D., Enard C. and Masclaux C.1996. The role of iron in plant host-pathogen interactions.Trends Microbiol.4: 232–237.

    Google Scholar 

  • Expert D., Dellagi A. and Kachadourian R.2000. Iron and fire blight: role in pathogenicity of desferrioxamine E, the main siderophore of Erwinia amylovora. In: Vanneste J. (ed.), Fire Blight. The disease and its causative agent, Erwinia amylovora.CAB Int., New York, pp. 179–195.

    Google Scholar 

  • Geider K.2000. Exopolysaccharides of Erwinia amylovora: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan. In: Vanneste J. (ed.), Fire Blight. The disease and its causative agent, Erwinia amylovora.CAB Int., New York, pp. 117–140.

    Google Scholar 

  • Goto F., Yoshihara T. and Saiki H.1998. Iron accumulation in tobacco plants expressing soybean ferritin gene.Transgenic Res.7: 173–180.

    Google Scholar 

  • Goto F., Yoshihara T., Shigemoto N., Toki S. and Takaiwa F.1999. Iron fortification of rice seed by the soybean ferritin gene.Nature Biotech.17: 282–286.

    Google Scholar 

  • Goto F., Yoshihara T. and Saiki H.2000. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin.Theor. Appl. Genet.100: 658–664.

    Google Scholar 

  • Hood E.E., Gelvin S.B., Melchers L. and Hoekema A.1993. New Agrobacterium helper plasmids for gene transfer to plants.Transgenic Res.2: 208–218.

    Google Scholar 

  • Horikoshi T., Danenberg K.D., Stadlauer T.H.W., Volkenandt M., Shea L.C.C., Aigner K., Gustavsson B., Leichman L., Frösing R., Ray M., Gibson N.W., Spears C.P. and Danenberg P.V.1992. Quantification of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction.Cancer Res.52: 108–116.

    Google Scholar 

  • Kalman J.R. and Arnold R.R.1988. Killing of Actinobacillus actinomycetemcomitans by human lactoferrin.Infect Immun56: 2552–2557.

    Google Scholar 

  • Kim J.F. and Beer S.V.2000. Hrp genes and harpins of Erwinia amylovora: a decade of discovery. In: Vanneste J. (ed.), Fire Blight. The disease and its causative agent, Erwinia amylovora.CAB Int., New York, pp. 141–162.

    Google Scholar 

  • King E.O., Ward M.K. and Raney D.E.1954. Two simple media for demonstration of pyocyanin and fluorescein.J. Lab. Clin. Med.44: 301–307.

    Google Scholar 

  • Leblay C., Chevreau E. and Raboin L.M.1991. Adventitious shoot regeneration from in vitro leaves of several pear cultivars (Pyrus communis L.).Plant Cell. Rep.25: 99–105.

    Google Scholar 

  • Lee-Tae J., Coyene D.P., Clermente T.E. and Mitra A.2001. Enhancement of bacterial wilt resistance in transgenic tomato plants expressing non-plant antibacterial lactoferrin gene.HortSci. 36: 492.

  • Lemoine J. and Michelesi J.C.1993. Comportement agronomique du poirier: incidence du crown-gall.Arbo Fruit465: 23–27.

    Google Scholar 

  • Mahe A., Grisvard J. and Dron M.1992. Fungal and specific gene markers to follow the bean-anthracnose infection process and normalize the bean chitinase mRNA induction.Mol. Plant-Microbe Interact5: 242–248.

    Google Scholar 

  • Malnoy M., Reynoird J.P. and Chevreau E.2000. Preliminary evaluation of new gene transfer strategies for resistance to fire blight in pear.Acta Hort538: 635–637.

    Google Scholar 

  • Malnoy M., Reynoird J.P., Mourgues F., Chevreau E. and Simoneau P.2001. A method for isolating total RNA from pear leaves.Plant Mol. Biol. Rept.19: 1–6.

    Google Scholar 

  • Malnoy M., Venisse J.S., Reynoird J.P. and Chevreau E.2003. Activation of three pathogen-inducible promoters of tobacco in transgenic pear after abiotic and biotic elicitation.Planta216: 802–814.

    Google Scholar 

  • Mitra A. and Zhang Z.1994. Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial proteins.Plant Physiol.106: 977–981.

    Google Scholar 

  • Mourgues F., Chevreau E., Lambert C. and De Bondt A.1996. Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.).Plant Cell. Rep.34: 373–378.

    Google Scholar 

  • Pierce A., Colavizza D., Benaissa M., Maes P., Tartar A., Montreuil J. and Spik G.1991. Molecular cloning and sequence analysis of bovine lactotransferrin.Eur. J. Biochem.196: 177–184.

    Google Scholar 

  • Ponka P. and Lok C.N.1999. The transferring receptor: role in health and disease.The International Journal of Biochemistry & Cell Biology31: 1111–1137.

    Google Scholar 

  • Reynoird J.P., Mourgues F., Norelli J.L., Aldwinckle H.S., Brisset M.N. and Chevreau E.1999a. First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia.Plant Sci.149: 23–31.

    Google Scholar 

  • Reynoird J.P., Mourgues F., Chevreau E., Aldwinckle H.S. and Brisset M.N.1999b. Expression of SB-37 gene in transgenic pears enhanced resistance to fire blight.Acta Hort.489: 243–244.

    Google Scholar 

  • Rosati C., Cadic A., Duron M., Renou J.P. and Simoneau P.1997. Molecular cloning and expression analysis of dihydroflavonol 4-reductase gene in flower organs of Forsythia x intermedia.Plant Mol. Biol.15: 303–311.

    Google Scholar 

  • Schägger H. and Von Jagow G.1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in range from 1 to 100 kDa.Anal Biochem.166: 368–379.

    Google Scholar 

  • Schuster A.M. and Davies E.1983. Ribonucleic acid and protein metabolism in pea hypocotyl. I: the aging process.Plant Physiol.73: 809–813.

    Google Scholar 

  • Scorza R., Ravelonandro M., Callahan A.M., Cordt J.M., Fuchs M., Dunez J. and Gonsalves D.1994. Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene.Plant Cell. Rep.14: 18–22.

    Google Scholar 

  • Spik G. and Theisen M.2000. Characterization of the post-translational biochemical processing of human lactoferrin expressed in transgenic tobacco.Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz43: 104–109.

    Google Scholar 

  • Überlacker B. and Werr W.1996. Vectors with rare-cutter restriction enzyme sites for expression of open reading frames in transgenic plants.Mol. Breeding2: 293–295.

    Google Scholar 

  • Vansuyt G., Mench M. and Briat J.F.2000. Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin.Plant Physiol. Biochem.38: 499–506.

    Google Scholar 

  • Van Wuytswinkel O., Vansuyt G., Grignon N., Fourcroy P. and Briat J.F.1998. Iron homeostasis alteration in transgenic tobacco overexpressing ferritin.Plant J.17: 93–97.

    Google Scholar 

  • Venisse J.S., Barny M.A., Paulin J.P. and Brisset M.N.2003. Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear.FEBS Lett.537: 198–202.

    Google Scholar 

  • Yessad S., Manceau C. and Luisetti J.1992. A detached leaf bioassays to evaluate virulence and pathogenicity of strains of Pseudomonas syringae pv. syringae on pear.Plant Dis.76: 370–373.

    Google Scholar 

  • Yi Y. and Guerinot M.L.1996. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency.Plant J.10: 835–844.

    Google Scholar 

  • Zhang Z., Coyne D.P., Vivader A.K. and Mitra A.1998. Expression of lactoferrin cDNA confers resistance to Ralstonia solanacearum in transgenic tobacco plants.Phytopathology88: 730–734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malnoy, M., Venisse, JS., Brisset, MN. et al. Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Molecular Breeding 12, 231–244 (2003). https://doi.org/10.1023/A:1026365311067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026365311067

Navigation