Skip to main content
Log in

Estrous Cycle Regulation of Mammary Epithelial Cell Proliferation, Differentiation, and Death in the Sprague-Dawley Rat: A Model for Investigating the Role of Estrous Cycling in Mammary Carcinogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The Sprague-Dawley rat is highly regarded for studies designed to investigate the effects of endocrine modulation on mammary carcinogenesis. In this study, we further evaluate the validity of the Sprague-Dawley rat model for the study of human breast cancer by evaluating the effects of normal 4-day estrous cycling on mammary epithelial cell proliferation, differentiation, and apoptotic death. Trends in mammary gland development with stage of 4-day estrous cycle were evident. Mammary glands isolated from follicular and early luteal stages had predominantly ductal histoarchitecture, whereas glands isolated from mid-late luteal were predominantly lobuloalveolar. Quantitation of BrdU incorporation revealed that epithelial cell proliferation was eight-fold higher in metestrus and diestrus-1 than in proestrus. Expression of β-casein and whey acidic protein (WAP)4 mRNA was also highly dependent on stage of estrous, with detection restricted to midcycle. Apoptotic cell death of mammary epithelium was found to be suppressed during the peak in cell proliferation. TRPM-2/clusterin mRNA was elevated when apoptosis was low and milk protein mRNA levels were high, consistent with putative roles for TRPM-2/clusterin in inhibiting cell death in regressing tissues and inducing mammary epithelial cell differentiation. Cell proliferation, differentiation, and death occurred only in a subset of epithelial cells per estrous cycle, and these cells appeared randomly distributed throughout multiple ductules and alveoli. These observations suggest that cellular response(s) to ovarian hormone-dependent signals is asynchronous. Cumulatively, these observations demonstrate that rat mammary epithelial cell proliferation, differentiation, and death are under the control of cycling ovarian hormones, similarly to the human mammary epithelium during the menstrual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. H. Peeters, A. L. Verbeek, A. Krol, M. M. Matthyssen, and F. de Waard (1995). Age at menarche and breast cancer risk in nulliparous women. Breast Cancer Res. Treat. 33:55–61.

    Google Scholar 

  2. B. M. Sherman and S. G. Korenman (1974). Inadequate corpus luteum function: A pathophysiological interpretation of human breast cancer epidemiology. Cancer 33:1306–1312.

    Google Scholar 

  3. I. den Tonkelaar and F. de Waard (1996). Regularity and length of menstrual cycles in women aged 41–46 in relation to breast cancer risk: Results from the DOM-project. Breast Cancer Res. Treat. 38:253–258.

    Google Scholar 

  4. B. Rosner, G. A. Colditz, and W. C. Willett (1994). Reproductive risk factors in a prospective study of breast cancer: The nurses' health study. Am. J. Epidemiol. 139:819–835.

    Google Scholar 

  5. L. Titus-Ernstoff, M. P. Longnecker, P. A. Newcomb, B. Dain, E. R. Greenberg, R. Mittendorf, M. Stampfer, and W. Willett (1998). Menstrual factors in relation to breast cancer risk. Cancer Epidemiol. Biomarkers Prevent. 7:783–789.

    Google Scholar 

  6. S. G. Korenman (1980). Oestrogen window hypothesis of the aetiology of breast cancer. Lancet 1(8170):700–701.

    Google Scholar 

  7. B. E. Henderson, R. Ross, and L. Bernstein (1988). Estrogens as a cause of human cancer: The Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 48:246–253.

    Google Scholar 

  8. D. Roy and J. G. Liehr (1999). Estrogen, DNA damage and mutations. Mutat. Res. 424:107–115.

    Google Scholar 

  9. J. C. Sabourin, A. Martin, J. Baruch, J. B. Truc, A. Gompel, and P. Poitout (1994). bcl-2 expression in normal breast tissue during the menstrual cycle. Int. J. Cancer 59:1–6.

    Google Scholar 

  10. H. Fanger and H. J. Ree (1974). Cyclic changes of human mammary gland epithelium in relation to the menstrual cycle— An ultrastructural study. Cancer 34:574–585.

    Google Scholar 

  11. P. M. Vogel, N. G. Georgiade, B. F. Fetter, F. S. Vogel, and K. S. McCarty, Jr. (1981). The correlation of histologic changes in the human breast with the menstrual cycle. Am. J. Pathol. 104:23–34.

    Google Scholar 

  12. T. A. Longacre and S. A. Bartow (1986). A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am. J. Surg. Pathol. 10:382–393.

    Google Scholar 

  13. D. J. Ferguson and T. J. Anderson (1981). Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br. J. Cancer 44:177–181.

    Google Scholar 

  14. T. J. Anderson, D. J. Ferguson, and G. M. Raab (1982). Cell turnover in the “resting” human breast: Influence of parity, contraceptive pill, age and laterality. Br. J. Cancer 46(3): 376–382.

    Google Scholar 

  15. C. S. Potten, R. J. Watson, G. T. Williams, S. Tickle, S. A. Roberts, M. Harris, and A. Howell (1988). The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br. J. Cancer 58:163–170.

    Google Scholar 

  16. J. A. Long and H. M. Evans (1922). The oestrous cycle in the rat and its associated phenomena. In A. O. Leuschner, (ed.), Memoirs of the University of California, Vol. 6, University of California Press, Berkeley, California.

    Google Scholar 

  17. J. Russo, M. J. Mills, M. J. Moussalli, and I. H. Russo (1989). Influence of human breast development on the growth properties of primary cultures. In Vitro Cell Dev. Biol. 27:643–649.

    Google Scholar 

  18. P. J. Schedin, R. Strange, M. Singh, M. R. Kaeck, S. C. Fontaine, and H. J. Thompson (1995). Treatment with chemopreventive agents, difluoromethylornithine and retinyl acetate, results in altered mammary extracellular matrix. Carcinogenesis 16:1787–1794.

    Google Scholar 

  19. B. Lloveras, S. Edgerton, and A. D. Thor (1991). Evaluation of in vitro bromodeoxyuridine labeling of breast carcinomas with the use of a commercial kit. Am. J. Clin. Pathol. 95:41–47.

    Google Scholar 

  20. P. Chromczynski and N. Sacchi (1987). Single step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162:156–159.

    Google Scholar 

  21. N. B. Schwartz (1969). A model for the regulation of ovulation in the rat. Rec. Prog. Horm. Res. 25:1–55.

    Google Scholar 

  22. N. B. Schwartz and P. Waltz (1970). Role of ovulation in the regulation of the estrous cycle. Fed. Proc. 29:1907–1912.

    Google Scholar 

  23. L. G. Nequin, W. L. Talley, B. G. Mann, and N. B. Schwartz (1974). Measurement of serumLHduring the proestrus critical period in rats exhibiting four-or five-day estrous cycles. Neuroendocrinology 14(2):65–71.

    Google Scholar 

  24. R. L. Butcher, W. E. Collins, and N. W. Fugo (1974). Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94:1704–1708.

    Google Scholar 

  25. P. S. Kalra and S. P. Kalra (1977). Temporal changes in the hypothalamic and serum luteinizing hormone-releasing hormone (LH-RH) levels and the circulating ovarian steroids during the rat oestrous cycle. Acta Endocrinol. (Copenh.) 85:449–455.

    Google Scholar 

  26. L. G. Nequin, J. Alvarez, and N. B. Schwartz (1979). Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrous cycles in the rat. Biol. Reprod. 20:659–670.

    Google Scholar 

  27. P. S. Kalra and S. P. Kalra (1979). Regulation of gonadal steroid rhythms in rats. J. Steroid Biochem. 11(1C):981–987.

    Google Scholar 

  28. M. C. Pike, D. V. Spicer, L. Dahmoush, and M. F. Press (1993). Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev. 15:17–35.

    Google Scholar 

  29. G. Melino and M. Piacentini (1998). 'Tissue’ transglutaminase in cell death: A downstream or a multifunctional upstream effector? FEBS Lett. 430: 59–63.

    Google Scholar 

  30. R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115:49–58.

    Google Scholar 

  31. L. E. French, J. V. Soriano, R. Montesano, and M. S. Pepper (1996). Modulation of clusterin gene expression in the rat mammary gland during pregnancy, lactation, and involution. Biol. Reprod. 55:1213–1220.

    Google Scholar 

  32. L. E. French, A. Whohlwend, A. P. Sappino, J. Tschopp, and J. A. Schifferli (1994). Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death. J. Clin. Invest. 93:877–884.

    Google Scholar 

  33. C. Koch-Brandt and C. Morgans (1996). Clusterin: A role in cell survival in the face of apoptosis? Prog. Mol. Subcell. Biol. 16:130–149.

    Google Scholar 

  34. C. B. Huggins (1987). Selective induction of hormonedependent mammary adenocarcinoma in the rat. J. Lab. Clin. Med. 109:262–266.

    Google Scholar 

  35. M. N. Gould (1993). Cellular and molecular aspects of the multistage progression of mammary carcinogenesis in humans and rats. Semin. Cancer Biol. 4:161–169.

    Google Scholar 

  36. E. S. Rivera, N. Andrade, G. Martin, G. Melito, G. Cricco, N. Mohamad, C. Davio, R. Caro, and R. M. Bergoc (1994). Induction of mammary tumors in rat by intraperitoneal injection of NMU: Histopathology and estral cycle influence. Cancer Lett. 86:223–228.

    Google Scholar 

  37. H. J. Thompson, J. N. McGinley, K. Rothhammer, M. Singh (1995). Rapid induction of mammary intraductal proliferations, ductal carcinoma in situ and carcinomas by the injection of sexually immature female rats with 1-methyl-1-nitrosourea. Carcinogenesis. 16(10):2407–2411.

    Google Scholar 

  38. J. Russo and I. H. Russo (2000). Atlas and histologic classification of tumors of the rat mammary gland. J. Mammary Gland Biol. Neoplasia, this issue.

  39. H. J. Thompson, M. Singh, and J. McGinley (2000). Classification of premalignant and malignant lesions developing in the rat mammary gland after injection of sexually immature rats with 1-methyl-1-nitrosourea. J. Mammary Gland Biol. Neoplasia, this issue.

  40. S. Nandi, R. C. Guzman, and J. Yang (1995). Hormones and mammary carcinogenesis in mice, rats, and humans:Aunifying hypothesis. Proc. Natl. Acad. Sci. USA 92:3650–3657.

    Google Scholar 

  41. I. H. Russo and J. Russo (1996). Mammary gland neoplasia in long-term rodent studies. Environ. Health Perspect. 104: 938–967.

    Google Scholar 

  42. D. Kritchevsky (1997). Caloric restriction and experimental mammary carcinogenesis. Breast Cancer Res. Treat. 46: 161–167.

    Google Scholar 

  43. J. Russo, L. K. Tay, and I. H. Russo (1982). Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res. Treat. 2:5–73.

    Google Scholar 

  44. C. J. Grubbs, M. M. Juliana, D. L. Hill, and L. M. Whitaker (1986). Suppression by pregnancy of chemically induced preneoplastic cells of the rat mammary gland. Anticancer Res. 6:1395–1400.

    Google Scholar 

  45. R. C. Guzman, J. Yang, L. Rajkumar, G. Thordarson, X. Chen, and S. Nandi (1999). Hormonal prevention of breast cancer: Mimicking the protective effect of pregnancy. Proc. Natl. Acad. Sci. USA 96:2520–2525.

    Google Scholar 

  46. V. C. Jordan (1991). Chemosuppression of breast cancer with long-term tamoxifen therapy. Prevent. Med. 20:3–14.

    Google Scholar 

  47. M. S. Smith, M. E. Freeman, and J. D. Neill (1975). The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: Prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96:219–226.

    Google Scholar 

  48. P. Mauvais-Jarvis, F. Kuttenn, and A. Gompel (1986). Estradiol/progesterone interaction in normal and pathologic breast cells. Ann. N. Y. Acad. Sci. 464:152–167.

    Google Scholar 

  49. A. C. Andres, G. Zuercher, V. Djonov, M. Flueck, and A. Ziemiecki (1995). Protein tyrosine kinase expression during the estrous cycle and carcinogenesis of the mammary gland. Int. J. Cancer 63:288–296.

    Google Scholar 

  50. B. Vonderhaar (1988). Regulation of development of the normal mammary gland by hormones and growth factors. In M. E. Lippman and R. Dickson (eds.), Breast Cancer: Cellular and Molecular Biology, Kluwer, Dordrecht, pp. 251–266.

    Google Scholar 

  51. G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.

    Google Scholar 

  52. H. J. Thompson, J. N. McGinley, P. Wolfe, M. Singh, V. E. Steele, and G. J. Kelloff (1998). Temporal sequence of mammary intraductal proliferations, ductal carcinomas in situ and adenocarcinomas induced by 1-methyl-1-nitrosourea in rats. Carcinogenesis 19:2181–2185.

    Google Scholar 

  53. H. J. Thompson, R. Strange, and P. J. Schedin (1992). Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomarkers Prevent. 1:597–602.

    Google Scholar 

  54. J. Steinberg, R. Oyasu, S. Lang, S. Sintich, A. Rademaker, C. Lee, J. M. Kozlowski, and J. A. Sensibar (1997). Intracellular levels of SGP-2 (clusterin) correlate with tumor grade in prostate cancer. Clin. Cancer Res. 3:1707–1711.

    Google Scholar 

  55. I. Jatoi (1998). Timing of surgery for primary breast cancer with regard to the menstrual phase and prognosis. Breast Cancer Res. Treat. 52:217–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schedin, P., Mitrenga, T. & Kaeck, M. Estrous Cycle Regulation of Mammary Epithelial Cell Proliferation, Differentiation, and Death in the Sprague-Dawley Rat: A Model for Investigating the Role of Estrous Cycling in Mammary Carcinogenesis. J Mammary Gland Biol Neoplasia 5, 211–225 (2000). https://doi.org/10.1023/A:1026447506666

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026447506666

Navigation