Skip to main content
Log in

Genetic engineering of recombinant glycoproteins and glycosylation pathway in mammalian host cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The analysis of many natural glycoproteins and their recombinant counterparts from mammalian hosts has revealed that the basic oligosaccharide structures and the site occupancy of glycosylated polypeptides are primarily dictated by the protein conformation.

The equipment of many frequently used host cells (e.g. BHK-21 and CHO-cells) with glycosyltransferases, nucleotide-sugar synthases and transporters appears to be sufficient to guarantee complex-type glycosylation of recombinant proteins with a high degree of terminal α2-3 sialylation even under high expression conditions. Some human tissue-specific terminal carbohydrate motifs are not synthesized by these cells since they lack the proper sugar-transferring enzymes (e.g. α1-3/4 fucosyltransferases, α2-6 sialyltransferases). Glycosylation engineering of these hosts by stable transfection with genes encoding terminal human glycosyltransferases allows to obtain products with tailored (human tissue-specific) glycosylation in high yields.

Using site-directed mutagenesis, unglycosylated polypeptides can be successfully converted in N- and/or O-glycoproteins by transferring glycosylation domains (consisting of 7-17 amino acids) from donor glycoproteins to different loop regions of acceptor proteins.

The genetic engineering of glycoproteins and of host cell lines are considered to provide a versatile tool to obtain therapeutic glyco-products with novel/improved in-vivo properties, e.g. by introduction of specific tissue-targeting signals by a rational design of terminal glycosylation motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Varki A (1993) Glycobiology 3: 97–130.

    Google Scholar 

  2. Berman PW, Lasky LA (1985) Trends Biochem Tech 3: 51–3.

    Google Scholar 

  3. Kobata A (1992) Eur J Biochem 209: 483–501.

    Google Scholar 

  4. Schachter H (1994) In Molecular Glycobiology (Fukuda M, Hindsgaul O, eds.), pp 88–162. Oxford, UK: Oxford University Press.

    Google Scholar 

  5. Hoffmann A, Nimtz M, Wurster U, Conradt HS (1994) J Neurochem 63: 2185–196.

    Google Scholar 

  6. Hoffmann A, Nimtz M, Getzlaff R, Conradt HS (1995) FEBS Lett 359: 164–68.

    Google Scholar 

  7. Pohl S, Hoffmann A, Rüdiger A, Nimtz M, Jaeken J, Conradt HS (1997) Glycobiology 7: 1077–84.

    Google Scholar 

  8. Conradt HS, Lindenmaier W, Ausmeier M, Hauser H, Dittmar KEJ (1986) Carbohydr Res 49: 443–50.

    Google Scholar 

  9. Conradt HS, Egge H, Peter-Katalinic J, Reiser W, Siklosi T, Schaper K (1987) J Biol Chem 262: 14600–605.

    Google Scholar 

  10. Mutsaers JHGM, Kamerling JP, Devos R, Guisez Y, Fiers W, Vliegenthart JFG (1986) Eur J Biochem 156: 651–54.

    Google Scholar 

  11. Conradt HS, Hofer B, Hauser H (1990) Trends Glycosci Glycotechnol 2: 168–81.

    Google Scholar 

  12. Goochee CF, Monica T (1990) Bio/Technology 8: 421–27.

    Google Scholar 

  13. Goochee CF, Gramer MJ, Andersen DC, Bahr JB, Rasmussen JR (1991) Bio/Technology 9: 1347–55.

    Google Scholar 

  14. Jenkins N, Parekh RB, James DC (1996) Nature Biotechnol 14: 975–81.

    Google Scholar 

  15. Grabenhorst E, Nimtz M, Conradt HS, unpublished results.

  16. Grabenhorst E, Hoffmann A, Nimtz M, Zettlmeiµ G, Conradt HS (1995) Eur J Biochem 232: 718–25.

    Google Scholar 

  17. Schlenke P, Grabenhorst E, Nimtz M, Conradt HS (1998) Cytotechnology, in press.

  18. Grabenhorst E, Hofer B, Nimtz M, Jäger V, Conradt HS (1993) Eur J Biochem 215: 189–97.

    Google Scholar 

  19. Ackermann M (1995) Doctoral thesis, Technical University of Braunschweig,Germany.

  20. Ackermann M, Nimtz M, Grabenhorst E, Conradt HS, Jäger V (1995) In The Baculovirus and Insect Cell Gene Expression Conference, Pinehurst, NC, USA (abstract).

    Google Scholar 

  21. Knepper TP, Arbogast B, Schreurs J, Deinzer ML (1992) Biochemistry 31: 11651–59.

    Google Scholar 

  22. James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV, Jenkins N (1995) Bio/Technology 13: 592–96.

    Google Scholar 

  23. Grabenhorst E (1994) Doctoral thesis, Technical University of Braunschweig,Germany.

  24. Dittmar KEJ, Conradt HS, Hauser H, Hofer B, Lindenmaier W (1989) In Advances in Protein Design (Blöcker H, Collins J, Schmidt RD, Schomburg D, eds.), GBF-Monographs vol. 12, pp145–56. Weinheim, New York: VCH Publishers.

    Google Scholar 

  25. Kagawa Y, Takasaki S, Utsumi J, Hosoi K, Shimizu H, Kochibe N, Kobata A (1988) J Biol Chem 263: 17508–15.

    Google Scholar 

  26. Zettlmeissl G, Conradt HS, Nimtz M, Karges P (1989) J Biol Chem 264: 21153–59.

    Google Scholar 

  27. Sasaki H, Bothner B, Dell A, Fukuda M (1987) J Biol Chem 262: 12059–76.

    Google Scholar 

  28. Takeuchi M, Takasaki S, Miyazaka H, Kato T, Hoshi S, Kochibe N, Kobata A (1988) J Biol Chem 263: 3657–63.

    Google Scholar 

  29. Nimtz M, Wray V, Augustin M, Klöppel K-D, Conradt HS (1993) Eur J Biochem 213: 39–56.

    Google Scholar 

  30. Hokke CH, Bergwerff AA, van Dedem GWK, Kamerling JP, Vliegenthart JFG (1995) Eur J Biochem 228: 981–1008.

    Google Scholar 

  31. Grabenhorst E (1991) Diploma thesis, Technical University of Braunschweig,Germany.

  32. Conradt HS, Gawlitzek M, Grabenhorst E, Hoffmann A, Nimtz M, Oltmanns-Bleck F, Pohl S (1997) In Medicinal Chemistry: Today andTomorrow (Yamazaki M,ed) pp 205–12. Blackwell Science.

  33. Conradt HS, Nimtz M, Dittmar KEJ, Lindenmaier W, Hoppe J, Hauser H (1989) J Biol Chem 264: 17368–73.

    Google Scholar 

  34. Costa J, Grabenhorst E, Nimtz M, Conradt HS (1997) J Biol Chem 272: 11613–21.

    Google Scholar 

  35. Grabenhorst E, Nimtz M, Costa J, Conradt HS (1998) J Biol Chem, in press.

  36. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB (1990) Genes Dev 4: 1288–1303.

    Google Scholar 

  37. Goelz S, Hession C, Goff D, Griffiths B, Tizard R, Newman B, Chi-Rosso G, Lobb R (1990) Cell 63: 1349–56.

    Google Scholar 

  38. Weston BW, Nair RP, Larsen RD, Lowe JB (1992) J Biol Chem 267: 4152–60.

    Google Scholar 

  39. Koszdin KL, Bowen BR (1992) Biochem Biophys Res Commun 187: 152–57.

    Google Scholar 

  40. Weston BW, Smith PL, Kelly RJ, Lowe JB (1992) J Biol Chem 267: 24575–84.

    Google Scholar 

  41. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T (1994) J Biol Chem 269: 14730–37.

    Google Scholar 

  42. Varki A (1994) Proc Natl Acad Sci USA 91: 7390–97.

    Google Scholar 

  43. Lasky LA (1995) Ann Rev Biochem 64: 113–39.

    Google Scholar 

  44. McEver RP, Moore KL, Cummings RD (1995) J Biol Chem 270: 11025–28.

    Google Scholar 

  45. Kansas GS (1996) Blood 88: 3259–87.

    Google Scholar 

  46. de Graaf TW, van der Stelt ME, Anbergen MG, van Dijk W (1993) J Exp Med 177: 657–66.

    Google Scholar 

  47. Brinkman-van der Linden EC, de Haan PF, Havenaar EC, van Dijk W (1998) Glycoconj J 15: 177–82.

    Google Scholar 

  48. de Vries T, Srnka CA, Palcic MM, Swiedler SJ, van den Eijnden DH, Macher BA (1995) J Biol Chem 270: 8712–22.

    Google Scholar 

  49. de Vries T, Palcic MP, Schoenmakers PS, van den Eijnden DH, Joziasse DH (1997) Glycobiology 7: 921–27.

    Google Scholar 

  50. Shinoda K, Morishita Y, Sasaki K, Matsuda Y, Takahashi I, Nishi T (1997) J Biol Chem 272: 31992–97.

    Google Scholar 

  51. Britten CJ, van den Eijnden DH, McDowell W, Kelly VA, Witham SJ, Edbrooke MR, Bird MI, de Vries T, Smithers N (1998) Glycobiology 8: 321–27.

    Google Scholar 

  52. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB (1994) J Biol Chem 269: 16789–94.

    Google Scholar 

  53. Kumar R, Potvin B, Muller WA, Stanley P (1991) J Biol Chem 266: 21777–83.

    Google Scholar 

  54. Nimtz M, Grabenhorst E, Gambert U, Costa J, Wray V, Morr M, Thiem J, Conradt HS (1998) Glycoconj J 15: 873–83.

    Google Scholar 

  55. Hoffmann A, Nimtz M, Conradt HS (1997) Glycobiology 7: 499–506.

    Google Scholar 

  56. Smith DF, Larsen RD, Mattox S, Lowe JB, Cummings RD (1990) J Biol Chem 265: 6225–34.

    Google Scholar 

  57. Sueyoshi S, Tsuboi S, Sawada-Hirai R, Dang UN, Lowe JB, Fukuda M (1994) J Biol Chem 269: 32342–50.

    Google Scholar 

  58. Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LK (1991) J Biol Chem 266: 17467–77.

    Google Scholar 

  59. Gersten K, Natsuka S, Trinchera M, Petryniak B, Kelly RJ, Hiraiwa N, Jenkins NA, Gilbert DJ, Copeland NG, Lowe JB (1995) J Biol Chem 270: 25047–56.

    Google Scholar 

  60. Weinstein J, Lee EU, McEntee K, Lai P-H, Paulson JC (1987) J Biol Chem 262: 17735–43.

    Google Scholar 

  61. Masri KA, Appert HE, Fukuda MN (1988) Biochem Biophys Res Commun 157: 657–63.

    Google Scholar 

  62. Larsen RD, Rajan VP, Ruff MM, Kukowska-Latallo J, Cummings RD, Lowe JB (1989) Proc Natl Acad Sci USA 86: 8227–31.

    Google Scholar 

  63. Homa FL, Hollander T, Lehman DJ, Thomsen DR, Elhammer AP (1993) J Biol Chem 268: 12609–16.

    Google Scholar 

  64. Jaskiewicz E, Guofen Zhu, Bassi R, Darling DS, Young WW Jr (1996) J Biol Chem 271: 26395–403.

    Google Scholar 

  65. Borsig L, Katopodis AG, Bowen BR, Berger EG (1998) Glycobiology 8: 259–68.

    Google Scholar 

  66. Kaplan HA, Woloski BMRNJ, Hellman M, Jamieson JC (1983) J Biol Chem 258: 11505–9.

    Google Scholar 

  67. Uejima T, Uemura M, Nozawa S, Narimatsu H (1992) Cancer Res 52: 6158–63.

    Google Scholar 

  68. Cho SK, Cummings RD (1997) J Biol Chem 272: 13622–28.

    Google Scholar 

  69. Zhu G, Allende ML, Jaskiewicz E, Qian R, Darling DS, Worth CA, Colley KJ, Young WW Jr (1998) Glycobiology 8: 831–40.

    Google Scholar 

  70. Grundmann U, Nerlich C, Rein T, Zettlmeissl G (1990) Nucl Acids Res 18: 667.

    Google Scholar 

  71. Joziasse DH, Schiphorst WECM, van den Eijnden DH, Van Kuik JA, Van Halbeek H, Vliegenthart JFG (1987) J Biol Chem 262: 2025–33.

    Google Scholar 

  72. Nemansky M, van den Eijnden DH (1992) Biochem J 287: 311–16.

    Google Scholar 

  73. Hokke CH, van der Ven JGM, Kamerling JP, Vliegenthart JFG (1993) Glycoconj J 10: 82–90.

    Google Scholar 

  74. Weisshaar G, Hiyama J, Renwick AGC, Nimtz M (1991) Eur J Biochem 195: 257–68.

    Google Scholar 

  75. Yan SB, Chao YB, van Halbeek H (1993) Glycobiology 3: 597–608.

    Google Scholar 

  76. Bergwerff AA, Van Oostrum J, Kamerling JP, Vliegenthart JFG (1995) Eur J Biochem 228: 113–26.

    Google Scholar 

  77. Colley KJ (1997) Glycobiology 7: 1–13.

    Google Scholar 

  78. Munro S (1998) Trends Cell Biol 8: 11–15.

    Google Scholar 

  79. Lowe M, Nakamura N, Warren G (1998) Trends Cell Biol. 8: 40–44.

    Google Scholar 

  80. Nakayama J, Fukuda MN, Fredette B, Ranscht B, Fukuda M (1995) Proc Natl Acad Sci USA 92: 7031–35.

    Google Scholar 

  81. Eckhardt M, Mühlenhoff M, Bethe A, Koopman J, Frosch M, Gerardy-Schahn R (1995) Nature 373: 715–18.

    Google Scholar 

  82. Bretscher MS, Munro S (1993) Science 261: 1280–81.

    Google Scholar 

  83. Grabenhorst E, Nimtz M, Conradt HS, manuscript in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald S. Conradt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabenhorst, E., Schlenke, P., Pohl, S. et al. Genetic engineering of recombinant glycoproteins and glycosylation pathway in mammalian host cells. Glycoconj J 16, 81–97 (1999). https://doi.org/10.1023/A:1026466408042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026466408042

Navigation