Skip to main content
Log in

Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In this review the current knowledge of protein degradation during preparation, storage and release from poly(lactic-co-glycolic acid) (PLGA) microparticles is described, as well as stabilization approaches. Although we have focussed on PLGA microparticles, the degradation processes and mechanisms described here are valid for many other polymeric release systems. Optimized process conditions as well as stabilizing excipients need to be used to counteract several stress factors that compromise the integrity of protein structure during preparation, storage, and release. The use of various stabilization approaches has rendered some success in increasing protein stability, but, still, full preservation of the native protein structure remains a major challenge in the formulation of protein-loaded PLGA microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. Crotts and T. G. Park. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J. Microencapsul. 15:699–713 (1998).

    Google Scholar 

  2. W. R. Gombotz and D. K. Pettit. Biodegradable polymers for protein and peptide drug delivery. Bioconjugate Chem. 6:332–351 (1995).

    Google Scholar 

  3. K. L. Smith, M. E. Schimpf, and K. E. Thompson. Bioerodible polymers for delivery of macromolecules. Adv. Drug Del. Rev. 4:343–357 (1990).

    Google Scholar 

  4. J. L. Cleland and A. J. S. Jones. Stable formulations of recombinant human growth hormone and interferon-γ for microencapsulation in biodegradable microspheres. Pharm. Res. 13:1464–1475 (1996).

    Google Scholar 

  5. J. L. Cleland, E. Duenas, A. Daugherty, M. Marian, J. Yang, M. Wilson, A. C. Celniker, A. Shahzamani, V. Quarmby, H. Chu, V. Mukku, A. Mac, M. Roussakis, N. Gillette, B. Boyd, D. Yeung, D. Brooks, Y.-F. Maa, C. Hsu, and A. J. S. Jones. Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J. Control. Release 49: 193–205 (1997).

    Google Scholar 

  6. J. L. Cleland. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnol. Prog. 14:102–107 (1998).

    Google Scholar 

  7. O. L. Johnson, W. Jaworowicz, J. L. Cleland, L. Bailey, M. Charnis, E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last, A. J. S. Jones, and S. D. Putney. The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res. 14:730–735 (1997).

    Google Scholar 

  8. H. K. Kim and T. G. Park. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation, stability and incomplete release mechanism. Biotechnol. Bioeng. 65:659–667 (1999).

    Google Scholar 

  9. M. A. Tracy. Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog. 14:108–115 (1998).

    Google Scholar 

  10. T.-H. Yang, A. Dong, J. Meyer, O. L. Johnson, J. L. Cleland, and J. F. Carpenter. Use of infrared spectroscopy to assess secondary structure of human growth hormone within biodegradable microspheres. J. Pharm. Sci. 88:161–165 (1999).

    Google Scholar 

  11. L. Chen, R. N. Apte, and S. Cohen. Characterization of PLGA microspheres for the controlled delivery of IL1α for tumor immunotherapy. J. Control. Release 43:261–272 (1997).

    Google Scholar 

  12. D. K. Pettit, J. R. Lawter, W. J. Huang, S. C. Pankey, N. S. Nightlinger, D. H. Lynch, J. A. C. L. Schuh, P. J. Morrissey, and W. R. Gombotz. Characterization of poly(glycolide-co-D,L-lactide)/poly(D,L-lactide) microspheres for controlled release of GM-CSF. Pharm. Res. 14:1422–1430 (1997).

    Google Scholar 

  13. J. Yang and J. L. Cleland. Factors affecting the in vitro release of recombinant human interferon-γ (rhIFN-γ) from PLGA microspheres. J. Pharm. Sci. 86:908–914 (1997).

    Google Scholar 

  14. M. J. Alonso, R. K. Gupta, C. Min, G. R. Siber, and R. Langer. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 12:299–306 (1994).

    Google Scholar 

  15. D. K.-L. Xing, D. T. Crane, B. Bolgiano, M. J. Corbel, C. Jones, and D. Sesardic. Physicochemical and immunological studies on the stability of free and microsphere-encapsulated tetanus toxoid in vitro. Vaccine 14:1205–1213 (1996).

    Google Scholar 

  16. P. Johansen, H. P. Merkle, and B. Gander. Physico-chemical and antigenic properties of tetanus and diphtheria toxoids and steps towards improved stability. Biochim. Biophys. Acta 1425:425–436 (1998).

    Google Scholar 

  17. P. Johansen, Y. Men, R. Audran, G. Corradin, H. P. Merkle, and B. Gander. Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm. Res. 15:1103–1110 (1998).

    Google Scholar 

  18. P. Johansen, H. Tamber, H. P. Merkle, and B. Gander. Diphtheria and tetanus toxoid microencapsulation into conventional and end-group alkylated PLA/PLGAs. Eur. J. Pharm. Biopharm. 47: 193–201 (1999).

    Google Scholar 

  19. A. Sanchéz, B. Villamayor, Y. Guo, J. McIver, and M. J. Alonso. Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres. Int. J. Pharm. 185:255–266 (1999).

    Google Scholar 

  20. J. L. Cleland, A. Lim, L. Barrón, E. T. Duenas, and M. F. Powell. Development of a single-shot subunit vaccine for HIV-1: Part 4. Optimizing microencapsulation and pulsatile release of MN rgp120 from biodegradable microspheres. J. Control. Release 47: 135–150 (1997).

    Google Scholar 

  21. T. Uchida, K. Shiosaki, Y. Nakada, K. Fukada, Y. Eda, S. Tokiyoshi, N. Nagareya, and K. Matsuyama. Microencapsulation of hepatitis B core antigen for vaccine preparation. Pharm. Res. 15:1708–1713 (1998).

    Google Scholar 

  22. J. L. Cleland, M. F. Powell, and S. J. Shire. The development of stable protein formulations: A close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307–377 (1993).

    Google Scholar 

  23. H. Sah. Protein behavior at the water/methylene chloride interface. J. Pharm. Sci. 88:1320–1325 (1999).

    Google Scholar 

  24. H. Sah. Protein instability toward organic solvent/water emulsification: Implications for protein microencapsulation into microspheres. PDA J. Pharm. Sci. Technol. 53:3–10 (1999).

    Google Scholar 

  25. M. F. Zambaux, F. Bonneaux, R. Gref, E. Dellacherie, and C. Vigneron. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release 60:179–188 (1999).

    Google Scholar 

  26. M. Morlock, H. Koll, G. Winter, and T. Kissel. Microencapsulation of rh-erythropoietin using biodegradable poly(D,L-lactide-co-glycolide): Protein stability and the effects of stabilizing excipients. Eur. J. Pharm. Biopharm. 43:29–36 (1997).

    Google Scholar 

  27. M. Iwata, T. Tanaka, Y. Nakamura, and J. W. McGinity. Selection of the solvent system for the preparation of poly(D,L-lactic-co-glycolic acid) microspheres containing tumor necrosis factoralpha (TNF-α). Int. J. Pharm. 160:145–156 (1998).

    Google Scholar 

  28. W. Lu and T. G. Park. Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problems. PDA J. Pharm. Sci. Tech. 49:13–19 (1995).

    Google Scholar 

  29. K. S. Suslick, D. A. Hammerton, and R. E. Cline, Jr. The sonochemical hot spot. J. Am. Chem. Soc. 108:5641–5642 (1986).

    Google Scholar 

  30. P. Reisz and T. Kondo. Free radical formation induced by ultrasound and its biological implications. Free Rad. Biol. Med. 13: 247–270 (1992).

    Google Scholar 

  31. H. Sah. Stabilization of proteins against methylene chloride / water interface-induced denaturation and aggregation. J. Control. Release 58:143–151 (1999).

    Google Scholar 

  32. S. M. Butler, M. A. Tracy, and R. D. Tildon. Adsorption of serum albumin to thin films of poly(lactide-co-glycolide). J. Control. Release 58:335–347 (1999).

    Google Scholar 

  33. M. M. Gaspar, D. Blanco, M. E. M. Cruz, and M. J. Alonso. Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: Influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release 52:53–62 (1998).

    Google Scholar 

  34. T. Tsai, R. C. Mehta, and P. P. DeLuca. Adsorption of peptides to poly(D,L-lactide-co-glycolide): 1. Effect of physical factors on the adsorption. Int. J. Pharm. 127:31–42 (1996).

    Google Scholar 

  35. T. Tsai, R. C. Mehta, and P. P. DeLuca. Adsorption of peptides to poly(D,L-lactide-co-glycolide): 2. Effect of solution properties on the adsorption. Int. J. Pharm. 127:43–52 (1996).

    Google Scholar 

  36. G. Crotts and T. G. Park. Stability and release of bovine serum albumin encapsulated within poly(D,L-lactide-co-glycolide) microparticles. J. Control. Release 44:123–134 (1997).

    Google Scholar 

  37. K. G. Carrasquillo, R. A. Cordero, S. Ho, J. M. Franquiz, and K. Griebenow. Structure-guided encapsulation of bovine serum albumin in poly(DL-lactic-co-glycolic) acid. Pharm. Pharmacol. Commun. 4:563–571 (1998).

    Google Scholar 

  38. K. Griebenow and A. M. Klibanov. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 118:11695–11700 (1996).

    Google Scholar 

  39. K. Griebenow and A. M. Klibanov. Can conformational changes be responsible for solvent and excipient effects on the catalytic behavior of subtilisin Carlsberg in organic solvents? Biotechnol. Bioeng. 53:351–362 (1997).

    Google Scholar 

  40. T. Knubovets, J. J. Osterhout, and A. M. Klibanov. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. Biotechnol. Bioeng. 63:242–248 (1999).

    Google Scholar 

  41. T. G. Park, H. Y. Lee, and Y. S. Nam. A new preparation method for protein loaded poly(D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J. Control. Release 55:181–191 (1998).

    Google Scholar 

  42. J.-M. Péan, M.-C. Venier-Julienne, F. Boury, P. Menei, B. Denizot, and J.-P. Benoit. NGF release from poly(D,L-lactide-coglycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. J. Control. Release 56:175–187 (1998).

    Google Scholar 

  43. J.-M. Péan, F. Boury, M.-C. Venier-Julienne, P. Menei, J.-E. Proust, and J.-P. Benoit. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres. Pharm. Res. 16:1294–1299 (1999).

    Google Scholar 

  44. O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nature Med. 2:795–799 (1996).

    Google Scholar 

  45. B. Bittner, M. Morlock, and H. Koll. Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: Influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur. J. Pharm. Biopharm. 45:295–305 (1998).

    Google Scholar 

  46. B. Bittner and T. Kissel. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J. Microencapsul. 16:325–341 (1999).

    Google Scholar 

  47. R. Falk, T. W. Randolph, J. D. Meyer, R. M. Kelly, and M. C. Manning. Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent. J. Control. Release 44:77–85 (1997).

    Google Scholar 

  48. T. J. Young, K. P. Johnston, K. Mishima, and H. Tanaka. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent. J. Pharm. Sci. 88:640–650 (1999).

    Google Scholar 

  49. J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable lyophilized protein formulations: Some practical advice. Pharm. Res. 14:969–975 (1997).

    Google Scholar 

  50. M. Morlock, T. Kissel, Y. X. Li, H. Koll, and G. Winter. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: Protein stabilization and in-vitro release properties. J. Control. Release 56:105–115 (1998).

    Google Scholar 

  51. K. G. Carrasquillo, H. R. Costantino, R. A. Cordero, C. C. Hsu, and K. Griebenow. On the structural preservation of recombinant human growth hormone in a dried film of a synthetic biodegradable polymer. J. Pharm. Sci. 88:166–173 (1999).

    Google Scholar 

  52. K. Fu, K. Griebenow, L. Hsieh, A. M. Klibanov, and R. Langer. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J. Control. Release 58: 357–366 (1999).

    Google Scholar 

  53. M. van de Weert, R. van 't Hof, J. van der Weerd, R. M. A. Heeren, G. Posthuma, W. E. Hennink, and D. J. A. Crommelin. Lysozyme distribution and conformation in a biodegradable polymer matrix as determined by FTIR-techniques. J. Control. Release 68:31–40 (2000).

    Google Scholar 

  54. S. Sharif and D. T. O'Hagan. A comparison of alternative methods for the determination of the levels of proteins entrapped in poly(lactide-co-glycolide) microparticles. Int. J. Pharm. 115:259–263 (1995).

    Google Scholar 

  55. H. Sah. A new strategy to determine the actual protein content of poly(lactide-co-glycolide) microspheres. J. Pharm. Sci. 86:1315–1318 (1997).

    Google Scholar 

  56. M. D. Blanco and M. J. Alonso. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm. 43:287–294 (1997).

    Google Scholar 

  57. H. Takahata, E. C. Lavelle, A. G. A. Coombes, and S. S. Davis. The distribution of protein associated with poly(DL-lactide-co-glycolide) microparticles and its degradation in simulated body fluids. J. Control. Release 50:237–246 (1998).

    Google Scholar 

  58. H. R. Costantino, R. Langer, and A. M. Klibanov. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J. Pharm. Sci. 83:1662–1669 (1994).

    Google Scholar 

  59. M. C. Lai and E. M. Topp. Solid-state chemical stability of proteins and peptides. J. Pharm. Sci. 88:489–500 (1999).

    Google Scholar 

  60. A. J. Domb, L. Turovsky, and R. Nudelman. Chemical interactions between drugs containing reactive amines with hydrolyzable insoluble biopolymers in aqueous solutions. Pharm. Res. 11: 865–868 (1994).

    Google Scholar 

  61. S. P. Schwendeman, H. R. Costantino, R. K. Gupta, M. Tobío, A. C. Chang, N. J. Alonso, G. R. Siber, and R. Langer. Strategies for stabilising tetanus toxoid towards the development of a singledose tetanus vaccine. Dev. Biol. Stand. 87:293–306 (1996).

    Google Scholar 

  62. P. G. Shao and L. C. Bailey. Porcine insulin biodegradable polyester microspheres: Stability and in vitro release characteristics. Pharm. Dev. Technol. 5:1–9 (2000).

    Google Scholar 

  63. M. Igartua, R. M. Hernández, A. Esquisabel, A. R. Gascón, M. B. Calvo, and J. L. Pedraz. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. J. Microencapsul. 14:349–356 (1997).

    Google Scholar 

  64. N. Badri Viswanathan, P. A. Thomas, J. K. Pandit, M. G. Kulkarni, and R. A. Mashelkar. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. J. Control. Release 58:9–20 (1999).

    Google Scholar 

  65. W. Wang. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185:129–188 (1999).

    Google Scholar 

  66. T. G. Park, W. Lu, and G. Crotts. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L-lactic acid-co-glycolic acid) microspheres. J. Control. Release 33:211–222 (1995).

    Google Scholar 

  67. H. K. Sah, R. Toddywala, and Y. W. Chien. The influence of biodegradable microcapsule formulations on the controlled release of a protein. J. Control. Release 30:201–211 (1994).

    Google Scholar 

  68. M. Igartua, R. M. Hernández, A. Esquisabel, A. R. Gascón, M. B. Calvo, and J. L. Pedraz. Stability of BSA encapsulated into PLGA microspheres using PAGE and capillary electrophoresis. Int. J. Pharm. 169:45–54 (1998).

    Google Scholar 

  69. K. Fu, D. W. Pack, A. Laverdiere, S. Son, and R. Langer. Visualization of pH in degrading polymer microspheres. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 25:150–151 (1998).

    Google Scholar 

  70. A. Brunner, K. Mäder, and A. Gopferich. pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16:847–853 (1999).

    Google Scholar 

  71. P. G. Shao and L. C. Bailey. Stabilization of pH-induced degradation of porcine insulin in biodegradable polyester microspheres. Pharm. Dev. Technol. 4:633–642 (1999).

    Google Scholar 

  72. A. Shenderova, T. G. Burke, and S. P. Schwendeman. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res. 16:241–248 (1999).

    Google Scholar 

  73. K. Mäder, B. Bittner, Y. Li, W. Wohlauf, and T. Kissel. Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from poly(lactide-co-glycolide) (PLG) or ABA-triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks. Pharm. Res. 15:787–793 (1998).

    Google Scholar 

  74. J. L. Cleland, A. Mac, B. Boyd, J. Yang, C. Hsu, H. Chu, V. Mukku, and A. J. S. Jones. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 14:420–425 (1997).

    Google Scholar 

  75. N. Nihant, C. Schugens, C. Grandfils, R. Jerome, and P. Theyssie. Polylactide microparticles prepared by double emulsionevaporation II. Effect of the poly(lactide-co-glycolide) composition on the stability of the primary and secondary emulsions. J. Colloid Interface Sci. 173:55–65 (1995).

    Google Scholar 

  76. M. S. Hora, R. K. Rana, J. H. Nunberg, T. R. Tice, R. M. Gilley, and M. E. Hudson. Release fo human serum albumin from poly-(lactide-co-glycolide) microspheres. Pharm. Res. 7:1190–1194 (1990).

    Google Scholar 

  77. G. Gander, E. Wehrli, R. Alder, and H. Merkle. Quality improvement of spray-dried protein-loaded D, L-PLA microspheres by appropriate polymer solvent selection. J. Microencapsul. 12: 83–97 (1995).

    Google Scholar 

  78. H. K. Lee, J. H. Park, and K. C. Kwon. Double-walled microparticles for single shot vaccine. J. Control. Release 44:283–293 (1997).

    Google Scholar 

  79. N. Wang and X. S. Wu. A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres using agarose hydrogel. Int. J. Pharm. 166:1–14 (1998).

    Google Scholar 

  80. S. P. Schwendeman, M. Tobío, M. Joworowicz, M. J. Alonso, and R. Langer. New strategies for the microencapsulation of tetanus vaccine. J. Microencapsul. 15:299–318 (1998).

    Google Scholar 

  81. M. Tobío, S. P. Schwendeman, Y. Guo, J. McIver, R. Langer, and M. J. Alonso. Improved immunogenicity of a core-coated tetanus toxoid delivery system. Vaccine 18:618–622 (2000).

    Google Scholar 

  82. G. Zhu, S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotechnol. 18:52–57 (2000).

    Google Scholar 

  83. G. Zhu and S. P. Schwendeman. Influence of basic salts on stability and release of proteins in injectable poly(lactide-co-glycolide) delivery devices. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 26:#6446 (1999).

    Google Scholar 

  84. G. Zhu and S. P. Schwendeman. Stabilization of bovine serum albumin encapsulated in injectable poly(lactide-co-glycolide) millicylinders. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 25: 267–268 (1998).

    Google Scholar 

  85. C. M. Agrawal and K. A. Athanasiou. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J. Biomed. Mater. Res. 38:105–114 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Weert, M., Hennink, W.E. & Jiskoot, W. Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles. Pharm Res 17, 1159–1167 (2000). https://doi.org/10.1023/A:1026498209874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026498209874

Navigation